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Abstract
The exact localization of intrahepatic vessels in relation to a tumour is an important issue in oncological liver
surgery. For computer-assisted preoperative planning of surgical procedures high quality vessel models are
required. In this work we show how to generate such models on the basis of registered CT or MRI data at
different phases of contrast agent propagation.
We combine well-established intensity-based rigid and non-rigid registration approaches using Mutual
Information as distance measure with different masking strategies as well as intensity inhomogeneity
correction for MRI data. Non-rigid deformations are modelled by multilevel cubic B-splines. Quantitative
evaluations of 5 MRI and 5 CT image pairs show that the liver moves rigidly 7.2 (+/2 4.2) mm on average,
while the remaining non-rigid deformations range from 1.4–3 mm. As a result we find that masked rigid
registration is necessary and in many cases also sufficient on clinical data. After non-rigid registration the
matching shows no deviations in most cases.
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INTRODUCTION
Surgical removal of primary tumours and metastases
from the liver is a potentially curative therapy. The
location of the tumour in relation to the vascular
system of the liver has a strong influence on the
operability decision and resection strategy. High
quality geometric computer models of the liver
tissue as well as the vascular system may support
the surgeon in planning and implementing liver
resections. They can provide precise resection

proposals (1), guide intraoperative procedures (2, 3)

and improve tumour detection (Figure 1). One way
to obtain high quality models of the portal and
hepatic veins – suitable for such tasks – is by
registration of different phases of CT or MRI data.
The planning procedure is based on preoperative
CT or MRI data under contrast agent injection.

In this work we present a method to generate
high quality vessel models containing portal as well
as hepatic veins via registration of different phases of
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contrast-enhanced CT and MRI data. The focus is
on the evaluation of state-of-the-art registration
methods on clinical data and not on the develop-
ment of new algorithms.

Clinical background
An important prerequisite for successful oncological
liver surgery is the complete resection of the tumour
with a safety margin of about one centimetre in
order to prevent recurrent tumours. A golden rule
states that the surgeon must not see the tumour
during surgical intervention. Resections based on
the extent of the tumour only (including safety
margin) are called ‘‘atypical’’. Only in case of small
tumours lying close beneath the liver surface, should
atypical resections be performed. In all other cases,
the spatial relation of the tumour to the vascular
system of the liver has to be taken into account
(‘‘anatomical resection’’).

In contrast to many other organs, the liver
possesses not only arteries and veins, but also a
third blood vessel system, the portal veins. They
drain venous blood from the entire gastrointestinal
tract, thus supplying eighty percent of the liver’s
blood. For an anatomical resection, first vessel
branches lying inside the safety margin as well as
their dependent branches have to be identified.
Next the liver tissue supplied by these branches
(called a vascular territory) has to be determined.

Consequently, a whole segment of the liver must be
removed rather than the tumour on its own.

Planning systems
Motivated by strong anatomical variations of the
liver’s vascular system, several groups (4–7) are
developing software systems that allow for precise
surgery planning. Those facilities support the
surgeon in deciding whether a resection is feasible
or not, and in specifying the resection strategy.
Planning is always based on 3D surface models
derived from segmented vessels, liver tissue and
tumours from contrast-enhanced CT or sometimes
MRI data.

One aim of planning systems is to visualize the
exact location of the tumour in relation to the
vessels in 3D, and to measure distances and volumes.
Based on the 3D models, the surgeon decides which
vessel branches can be preserved.

Another functionality are automated resection
proposals containing the dependent vascular terri-
tories. Typically, only the portal veins are con-
sidered in the computation. This is justified by the
fact that hepatic arteries are supposed to run close to
the portal veins; they are difficult to identify.
However, with modern multi-slice CTs arteries
can also be imaged.

An important issue is to ensure not only blood
supply but also blood drainage via the hepatic veins.

(a) (b)

Figure 1 The boundary of the tumour is well demarkated in the PV phase (left), while the vascular system has higher
contrast in the HV phase (right).
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Preim et al. (1) were the first to incorporate hepatic
veins in the planning process.

Image acquisition using contrast agents
In contrast-enhanced bi- or tri-phase imaging, two
or three acquisitions are carried out at different
points in time depending on the arrival time of the
contrast agent in arteries, portal and hepatic veins.
First, the contrast agent reaches the arteries (arterial
phase), then the portal veins (portal venous phase)
and at last the hepatic veins (hepatic venous phase).
In the portal venous (PV) phase, the hepatic veins
are not enhanced. However, in the hepatic venous
(HV) phase, portal veins are typically also visible,
but with lower contrast as in the portal venous
phase. To derive high-quality vessel models, portal
veins should be segmented from a PV phase and
hepatic veins from a HV phase, see Figure 2. PV as
well as HV images are acquired during respiration
hold, which is normally at end-inspiration.
Unfortunately, the patient breathes between the
acquisitions - the position and shape of the liver
cannot be reproduced exactly. So if segmentations
of portal and hepatic veins from different phases are
to be used in one common model, the phases have
to be registered. Registration is the process of
determining a geometrical transformation which
maps each point in one data set (model) to its
anatomically corresponding point in the other data
set (reference).

Previous work
Several clinical applications and algorithms con-
cerning the registration of CT or MRI data of the
liver have been published. The applications range
from radiosurgery (8), control of thermal ablations (9),
localization of malignancies in combination with
FDG-PET (10) to quantification of tumour volume
change over time (11, 12). Intensity-based registration
methods using Mutual Information (MI) as a
similarity measure allow rigid or even non-rigid
transformations to prevail. Feature-based approaches
using liver vessels have also been introduced.
Charnoz et al. (12) extract a graph representation of
the portal vein from model and reference CT data
respectively, and perform an adapted graph match-
ing. In contrast to that, Aylward et al. (13) determine
a vessel model from model data only, which is fitted
directly into the intensity data of the reference. Both
methods are promising, but have to be evaluated on
a larger set of data.

Successful rigid and non-rigid registrations on
different clinical liver data sets have been reported
for intensity-based methods using MI. In case of
rigid transformations, in all referenced work (8–11) a
liver mask is used to restrict the evaluation of the MI
value on liver voxels. That means that the motion of
the liver in relation to its surroundings has no
influence on the registration result except for
motion-dependent deformations of the liver itself.

Rohlfing et al. (8) as well as Park et al. (11) apply
intensity-based non-rigid registration to correct for
these liver deformations. Again, a distance measure
based on MI is minimized.

The most important task is to ensure that
deformations are physically plausible, i.e. there
exists a certain degree of smoothness. Therefore,
the main characteristic of non-rigid registration
methods is the underlying deformation model, and
consequently the approach for numerical solution of
the problem (14).

In parametric image registration, deformations are
parameterized by appropriate basis functions, for
example, cubic B-splines (15) or Thin-plate
splines (16). A smooth free-form deformation is
found by non-linear optimization of the configura-
tion of B-spline control points; smoothness is an
intrinsic property of cubic spline functions.
Sometimes, when deformations have a highly local
character, extra regularizers are employed.

In non-parametric image registration, smoothness
is always introduced by a smoothing term; it is
added to the distance measure thus penalizing non-
smooth deformations. There are several approaches
for those regularizers (17), which are sometimes
physically motivated like in elastic (18) or fluid
registration (19).

For the purpose of tumour follow-up, Park
et al. (11) apply parametric non-rigid registration
based on Thin-plate splines (16) to CT data of the
liver acquired on different days. The Thin-plate
splines are defined by 24 irregularly distributed
control points, which are positioned automatically.
The disadvantage of Thin-plate splines is their
global support. This means that each control point
influences the transformation at every data point. In
contrast to Thin-plate splines, B-splines are defined
on a regular control grid and have local support;
each control point influences only a well-defined
sub volume. Moreover, a hierarchy of B-splines can
be easily generated. Both aspects lead to a more
efficient implementation. Rohlfing et al. (8) use such
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a multilevel B-spline technique to build a multi-
stage respiratory motion model of the liver.

Our approach
The aim of this contribution is to investigate how
much the liver’s position and shape changes between
the portal venous and the hepatic venous phase, and
whether these changes can be eliminated by rigid,
and if necessary, by non-rigid MI based registration.
The investigations cover CT as well as MRI data.

The influence of a manual and an automatic
masking strategy on the rigid registration results is
analyzed. The non-rigid registration algorithm is
similar to the multilevel B-spline technique of
Rohlfing et al. (8), but in case of MRI data, an
intensity inhomogeneity correction is applied
beforehand.

METHODS
The rigid registration method used in this work is an
implementation of the popular multi-resolution
algorithm of Studholme et al. (20). The idea behind
it is to minimize mutual information (MI) between
model and reference image by systematically varying
translation and rotation parameters of the model in
relation to the reference image. In order to improve
robustness and run-time, the algorithm makes use of
a pyramid of low-pass filtered and resampled copies
of the original image data. Optimization begins on a
coarse resolution (5 mm isotropic voxel size) and
successively moves on to finer levels of the pyramid
until it reaches the resolution of the original data.

MI is implemented by histogram binning. In all
cases, the HV phase is taken as the reference and the
PV phase as the model. The initial transformation of
the model data is the identity. No manual pre-
registration is necessary for PV to HV phase
registration.

Masking
As mentioned in the introduction it is reasonable to
use a liver mask to restrict the MI evaluation to liver
voxels. Different manual, semi-automatic and auto-
matic masking methods have been used in the
literature. Dalen et al. (10) construct a bounding box
of the liver manually. Carillo et al. (9) additionally
segmented the liver manually. Rohlfing et al. (8) also
use a manually segmented liver mask for rigid
registration, but only for comparison with their
non-rigid strategy; their actual algorithm works
without masking. Park et al. (11) provide automatic
masking by a probabilistic liver atlas constructed
from 32 different patients.

In our application, usually a manually segmented
liver mask exists anyway, since it is needed for the
preoperative planning process. But in addition, we
investigated an automatic method to generate a
mask via an active shape model of the liver (21). The
general idea to use a statistical model generated from
a training set of manually segmented livers is similar
to the work of Park et al. (11), yet the method to
achieve this goal is fundamentally different. The
model of Park et al. is constructed by Thin-plate
spline warping of each instance of the training set to

(a) (c)(b)

Figure 2 Portal (pink) and hepatic (blue) veins are displayed in the PV (a) and the HV (b) phase. A combination of portal
veins from the PV and hepatic veins from the HV phase is visualized in (c).
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a reference data set. Each voxel of the probabilistic
atlas represents the fractional percentage of warped
patient data sets that have a label at that reference
voxel location. For registration, the probabilistic
atlas is mapped onto the reference data set and a
threshold is set at its twentieth percentile. The
threshold volume defines the mask.

Our shape model (22) is based on surfaces
generated from 43 segmented liver training data
sets, but not on labelled voxels. The idea is to map
all training surfaces to a common reference
coordinate system, and to perform a principal
component analysis on corresponding surface
points (21). In order to solve the inherent corre-
spondence problem, surface feature lines on each
surface are identified semi-automatically. The sur-
face is divided into so-called patches defined by
these feature lines. Each patch of one surface is then
automatically mapped to the corresponding patch
on the other surface by minimizing metric distortion
of the mapping. This results in a one-to-one
correspondence mapping which is dense across both
surfaces. Principal component analysis of corre-
sponding surface points provides a mean shape and
the main shape variations. The weights of the shape
variations are parameters of the shape model. In an
optimization process, the position (translation,
rotation) and the shape parameters are adapted to
fit the model surface to the grey value data of an
individual patient data set. The adaptation is driven
by evaluation of grey value profiles perpendicular to
the model surface. After automatically adapting the
shape model to an individual data set, the resulting
liver surface is scan converted to label voxel data.
These labels are then used as a liver mask.

A detailed description of the shape model, the
adaptation process and the accuracy of the method is
given in Lamecker et al. (23, 24). So far, only CT data
were segmented in this fashion. A profile evaluation
strategy for MRI data is subject to future work.

The influence of different masking strategies on
the registration process is evaluated in the results
section.

Non-rigid registration
In general, rigid registration is not able to account
for all differences between the two imaged phases.
Remaining non-linear deformations are treated by
applying a non-rigid registration algorithm within
the same parametric framework as the initial rigid
alignment, where the former result is taken as input;

only the class of geometric transformations is
extended to higher degrees of freedom. In this step,
no masking of the liver is employed.

The deformation model is defined on a 3D
discrete uniform control point grid (CPG) with
cubic B-spline interpolation between adjacent
control points. The scope of each control point is
defined by grid resolution and decreases continu-
ously within a sub-volume defined by its second-to-
next neighbours. The algorithm starts on a very
coarse grid with 100 mm grid spacing, which is
successively refined to 12.5 mm spacing (3 refine-
ments). Hence, global deformations are corrected at
the beginning, while local deformations are itera-
tively resolved later on. Complementary, we have
again a data pyramid. The main intention is to
prevent the optimization from terminating in a local
minimum of the distance measure. At each level of
the pyramid, a gradient descent-like optimization
strategy minimizes MI.

Most of the computation time is needed for
evaluation of the distance measure with respect to
the gradient calculation. The computational cost for
approximating the gradient numerically is not
dependent on grid resolution, but on image
resolution. Thus, the multi-resolution strategy
considerably accelerates run time as a by-product.
Furthermore, these gradient computations can be
easily parallelized. For our experiments, we use a
multi-processor implementation for shared memory
machines like in Rohlfing et al. (25); there exists a
single-processor variant for different platforms as
well, with a run-time of about an hour. The tool is
incorporated into AMIRA (26) – a system for
advanced visual data analysis. Moreover, all visua-
lizations in this paper have been created using
AMIRA.

Inhomogeneity correction for MR-images
In MR imaging, inhomogeneities of the magnetic
fields may result in spatial variations of the image
intensity, in particular, if surface coils are applied.
Those intensity variations influence intensity-based
non-rigid registration significantly. The algorithm
introduced by Likar et al. (27) compensates for such
intensity variations by multiplying grey values with a
3D polynomial of order 4. As a measure of image
homogeneity, the entropy is calculated from the
grey value histogram. Entropy should be minimal
for a homogeneous image, because it contains
less information than an inhomogeneous image.
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Application of inhomogeneity correction leads to
convincing non-rigid registration results for MRI
data as shown in the results section.

Evaluation methods
It is a difficult task to evaluate performance and
accuracy of registration methods, and in particular of
non-rigid registration methods, on real clinical data,
because there is no bench-mark available for
comparison. However, some validation is possible.
We consider three different kinds of evaluation
method:

a) Visual inspection: The first kind of evalua-
tion is a thorough visual inspection. In order to
assess vessel registration, each axial slice of the model
image is overlaid with intersection lines of a vessel
model segmented from the reference data.
Significant distances are measured interactively.
This way, only distances within axial slices are
investigated, though.

b) Comparison of different registration

strategies: The second kind of evaluation method
simply computes differences in the transformations
determined by different registration strategies. The
question of whether there is a significant difference
between manual, automatic or no liver masking is
addressed. Centre lines of the portal veins serve as
test structures; they are automatically extracted from
segmented portal veins by the TEASER
algorithm (28). The same centre line points are
transformed with both transformations that shall be
compared. Thus, corresponding points between
different transformations are obtained and the
distance between these points can be computed.

c) 3D distance measurements: The third kind
of evaluation is an attempt to get a more objective
registration error. To this end, centre lines of the
portal veins extracted from PV phase are compared
to centre lines extracted from HV phase. Their
distance is determined by computing for each point
on the centre lines in the HV phase the closest point
of the centre lines extracted from PV phase. It is
important to notice that the closest point is not
necessarily the anatomical corresponding point, and
consequently, the distance is just an approximation.
Additional inaccuracies of the measurement meth-
odology are caused by the image resolution (in
particular slice thickness) and by the segmentation
and centre line extraction process. Thus, the
resulting distance does not reflect absolute accuracy

of the registration methods, but general tendencies
like a distance decrease can be detected.

RESULTS
Image acquisition
Abdominal contrast-enhanced breath-hold CT (5
patients) and MRI (5 patients) images in PV and HV
phase were acquired. The CT data were imaged on
a single slice spiral scanner (GE HiSpeed) with 2
mm reconstructed slice thickness (5 mm collima-
tion, pitch 1.5) using Imeron as contrast agent . The
MR images were acquired on a 1.5 T Siemens
Symphony scanner using a surface coil and
Magnevist as contrast agent. A T1-weighted
FLASH 3D VIBE sequence with fat saturation was
applied. The sequence parameters were TE = 1.43
ms, TR = 4.66 ms, flip angle = 10 ,̊ pixel size =
0.6 mm, slice thickness = 2.5 mm, 72 axial slices.

Evaluation of different registration strategies
Visual inspection of the original data shows obvious
deviations between PV and HV phase for all but
two data sets (CT2, CT3). In the following, visual
inspection refers to the evaluation procedure
defined in the methods section. Rigid registration
of the original data without masking in fact reduces
distances, but is clearly not satisfactory, whereas
rigid registration with masking in many cases leads
to sufficient results (see Figure 3a and 3b). The
reason why liver masking is so important for rigid
registration is illustrated in Figure 3c and 3d.
Although the liver has moved in this case,
surrounding structures have not. Since image
distance is measured globally, registration without
masking determines a rigid transformation which is
actually a compromise of the moving liver and the
resting surrounding structures.

In Figure 4, portal veins extracted from the PV
(transparent) and HV phase (solid) of CT1 are
shown. The improvement from original over rigidly
registered (with and without masking) to non-
rigidly registered data is clearly visible. The quality
of the results is classified into two categories. The
first category contains those data sets that have
minor deviations after masked rigid registration and
where no deviations can be observed after non-rigid
registration. This category includes data sets with
few vessel segments exhibiting deviations of 1–2
mm (CT2, CT3, CT4), data sets with many
segments having 1–2 mm (MR5) and data sets
having some segments with 2–3 mm (MR1, MR3).
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As mentioned before, non-rigid registration com-
pletely removes these differences. The second
category contains data sets having many vessel
segments with 2–3 mm differences (CT1, CT5,
MR2, MR4) after masked rigid registration. Non-
rigid registration improves the results in those cases,
but not completely. In CT1 and MR2, one single

segment with 3 mm distance and in CT5 and MR4
two segments with 2–3 mm distance are observed.
All those segments are end parts of small peripheral
vessels. We ascribe these differences to the fact that
the vessels are small; they have a very low influence
on the MI distance measure which is in this case
dominated by the nearby liver surface. As the liver

(a)

(c)

(b)

(d)

Figure 3 Rigidly registered vessels without (a) and with (b) masking are overlaid on an image slice of MR2. Original
slices of the same data set in PV (c) and HV (d) phase are overlaid with outlines of the liver (red) and surrounding
structures (green) extracted from PV phase.
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shows little structure at the periphery, local
transformation is not well-defined. Results after
(masked) rigid and non-rigid registration are illu-
strated for CT1 in Figure 5 and MR4 in Figure 6.

The analysis of differences between the computed
transformations confirms the results of the visual
inspection and interactive distance measurement. In
Table 1, for each data set the root mean square
(RMS) distance between portal vein centre line
points before and after masked rigid registration is
listed. The RMS distance ranges between 1.3 and
12.3 mm and is on average 7.2 (+/2 4.2) mm.
Conforming with visual inspection, significant
movements of the liver vessels are observed in all
cases except for CT2 and CT3. In the second row of
Table 1, differences between rigidly registered data
with (manual) and without liver masking are shown.

The distances range between 0.7 and 5.9 mm and
are 3.9 (+/2 1.9) mm on average. This confirms the
influence of the masking procedure on the rigid
registration process. In the last row, distances
between rigidly (with manual masking) and non-
rigidly registered centre lines are shown. The
distances range between 1.4 and 3.0 mm and are
2.2 (+/2 0.6) mm on average. Again, the results of
the visual inspection are approved: Data sets CT1,
CT5, MR2 and MR4 exhibit the most significant
non-rigid deformations.

For those three data sets showing approximately 3
mm deviations between rigid and non-rigid registra-
tion, the third evaluation method is applied (Table 2).
The approximated distances between portal vein
centre lines extracted from PV and HV phase are
determined. A clear advantage of rigid registration

(a)

(c)

(b)

(d)

Figure 4 Portal veins are extracted from PV phase (transparent) and HV phase (solid) of CT1, whereas HV phase is
shown at original position (a), rigidly registered without masking (b) rigidly registered with masking (c) and non-rigidly
registered (d).
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(a)

(b)

(d)

(e)

(c) (f)

Figure 5 Three different axial slices of the PV phase of data set CT1 with intersecting liver surface (yellow), portal (pink)
and hepatic veins (blue) from the HV phase. The left column shows results after rigid registration with masking and the
right column after non-rigid registration.
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(a)

(b)

(d)

(e)

(c) (f)

Figure 6 Three different axial slices of the PV phase of data set MR4 with intersecting liver surface (yellow), tumour
(white), vena cava (dark blue), portal (pink) and hepatic veins (light blue) of the HV phase. The left column shows results
after rigid registration with masking and the right column after non-rigid registration.
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with masking over no masking is confirmed again.
Applying non-rigid registration in all three cases
further decreases the RMS distances, yet the
differences are small. The reason might be related to
inaccuracies of the method as discussed in the
evaluation method section. Additionally, the distances
lie in the range of the slice thickness of 2.0–2.5 mm.
Looking at the portion of points having more than 2
mm distance shows a more significant improvement
by non-rigid registration.

The implemented intensity inhomogeneity cor-
rection of MRI data produces good results. In
Figure 7, a MRI slice before and after correction, as
well as an intensity profile extracted from this slice is
shown. Without intensity correction non-rigid
registration fails (Figure 8). MI presumes a statistical
dependency between model and reference intensity

values of corresponding anatomical structures.
Smooth global intensity inhomogeneities disturb
these dependencies. The computation of MI is
based on the joint 2D intensity histogram of model
and reference data; it contains the proportion of
each grey value combination over all voxels
belonging to the overlapping regions of the two
images. Before intensity correction, the distribution
is spread along the diagonal of the histogram, shown
in Figure 8c, whereas after correction, it is
noticeably clustered, shown in Figure 8d.

Influence of masking
The effect of the liver mask on the registration
process is analyzed in more detail for CT data. The
first question to be addressed is, whether it is
necessary to mask data for rigid registration, if it is

Table 1 The RMS distances in mm between differently transformed portal vein centre lines are listed

CT1 CT2 CT3 CT4 CT5 MR1 MR2 MR3 MR4 MR5 AVG

Initial to rigid masked 9.2 1.4 1.3 3.2 12.3 4.6 7.1 10.0 11.0 11.1 7.2 (+/2 4.2)

Rigid to rigid masked 5.2 1.6 0.7 2.0 3.8 3.5 5.7 5.2 5.6 5.8 3.9 (+/2 1.9)

Rigid masked to non-rigid 3.0 1.6 1.4 1.6 2.8 1.5 2.4 1.9 3.0 2.3 2.2 (+/2 0.6)

The first row specifies the movement of the centre lines between their original position and their position after masked rigid registration. In the second row, differences between
rigid registration with and without masking are given. The last row quantifies the centre lines movements between masked rigid and non-rigid registration.

Table 2 The approximated distances between portal vein centre lines extracted from PV and HV phase are shown for
three different registration strategies

RMS (mm) .2 mm (%)

rigid rigid masked non-rigid rigid rigid masked non-rigid

CT1 4.8 2.5 2.3 85 46 30

CT5 3.5 3.0 2.5 73 61 34

MR4 5.1 2.8 2.6 92 68 47

The RMS value of the distances as well as the portion of the centre line points showing more than 2 mm distance is listed.

(a) (c)(b)

Figure 7 MR image slice without (left) and with inhomogeneity correction (right). The graph in the middle shows a grey
value profile of the original (red) and corrected (green) image data. The position of the profile is visualized in the image
slice.
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used only as initial registration for the non-rigid
method. The answer is no, as can be seen in the first
row of Table 3. No significant differences between
the resulting non-rigid transformations can be
observed visually. The non-rigid registration algo-
rithm adjusts the differences of the two initial rigid
transformations. Consequently, no masking has to
be applied if it is decided to use non-rigid
registration.

Another issue is, whether there is a difference
between automatic and manual masking. The
automatic adaptation of the liver shape model works
well in all but one case (CT5). See Figure 9 for a
good and a bad example. The automatic liver
masking is not as accurate as the manual, but
these deviations only have minor influence on the
rigid registration process shown in row 2 of
Table 3.

(a) (b)

(c) (d)

Figure 8 The result of non-rigid registration is shown for original (a) and inhomogeneity corrected (b) MRI data. In figure
(c) and (d), the 2D Histogram of the joint intensity value distribution of rigidly registered model and reference MRI data is
displayed. On the left, the histogram is shown before intensity inhomogeneity correction and on the right after.

Evaluation of state-of-the-art methods 17

E 2005 John Wiley & Sons, Ltd. Int J Medical Robotics and Computer Assisted Surgery 2005;1(3):6–20

www.roboticpublications.com

FI
NA

L
PR

OO
F



DISCUSSION AND CONCLUSION
The aim of this contribution is to evaluate existing
intensity-based registration algorithms on clinical
data for liver surgery planning. The focus is not on
the development of new methods. The investigated
question is how much the liver’s position and shape
changes between the portal venous and the hepatic
venous phase, and whether these changes can be
eliminated by rigid, and if necessary, by non-rigid
MI based registration. This study shows that in most
cases, patients are not able to reproduce the
respiratory state of PV phase in HV phase exactly.
Rigid movements and deformations are lower than
reported by Rohlfing et al. (8) This is not surprising,
because they measure the differences between
maximal inhale and exhale state, while we only
consider different inhale positions.

Masked rigid and non-rigid intensity-based
registration is well suited to correct for the
displacements of the liver between PV and HV

phase. The key to successful rigid registration of the
liver is to restrict evaluation of the MI distance
measure to liver voxels. This is also reported by
other groups (9–11). Since in our case a precise
segmentation of the liver for surgery planning is
available anyway, liver masking is easy. In cases
where there is no manual segmentation provided,
we propose to use an automatic segmentation
method based on a statistical shape model of the
liver. This type of automatic masking produces
registration results that are almost identical to the
case of manual masking.

For non-rigid registration masking is not neces-
sary. In the case of MR images acquired with a
surface coil, intensity inhomogeneities lead to
unsatisfactory results after non-rigid registration.
Thus Rohlfing et al. decided in an earlier work (29)

to use the body coil. However, using the surface
coil often is preferred due to its higher signal to
noise ratio. We overcome this problem with our

Table 3 The RMS distances in mm between differently transformed portal vein centre lines are listed

CT1 CT2 CT3 CT4 CT5

Non-rigid with initial rigid and rigid masked 0.8 0.5 0.9 0.7 0.7

Rigid with manual and automatic masking 0.8 0.7 0.9 0.4 1.4

The first row shows the distances of non-rigid transformations resulting from rigidly pre-registered data with and without masking. The second row gives the distances between
rigid transformations using manual or automatic masking.

(a) (b)

Figure 9 A typical result (CT1) of the automatic masking method is illustrated on the left, and the only bad result is
illustrated on the right (CT5).
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Int J Medical Robotics and Computer Assisted Surgery 2005;1(3):6–20 E 2005 John Wiley & Sons, Ltd.

www.roboticpublications.com

FI
NA

L
PR

OO
F



method by performing inhomogeneity corrections
based on histogram equalization.

In the future we want to investigate whether
additional constraints, like volume preservation (30,

31), could help to overcome small remaining
inaccuracies after non-rigid registration. We think
that especially at the periphery of the liver,
deformations should follow physical rules to a larger
extent. The next important step to take is to
quantify the impact of more precise vessel models
on the preoperative planning process.

Rigid registration with automatic masking
achieves fast and in many cases acceptable registra-
tion results. In cases where higher accuracies are
desired non-rigid registration must be applied.
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