Feature-Preserving, Multi-Material
Mesh Generation using Hierarchical Oracles

Max Kahnt, Heiko Ramm, Hans Lamecker, and Stefan Zachow

Medical Planning Group, Zuse Institute Berlin,
Takustrafle 7, D-14195 Berlin-Dahlem, Germany
<lastname>Qzib.de
http://www.zib.de/en/visual/medical-planning.html

Abstract. This paper presents a method for meshing multi-material
domains with additional features curves. This requirement arises for in-
stance in situations where smooth objects (e.g. anatomical structures)
are combined with technical objects (e.g. implants, surgical screws). Our
approach avoids the tedious process of generating a single consistent in-
put surface by means of an implicit representation, called oracle. Input
features are preserved in the output mesh and termination of the algo-
rithm is proved for certain conditions. We show that our method provides
good element quality while at the same time keeping the number of ele-
ments in the output mesh low.

1 Introduction

Problems that can be described by partial differential equations (PDEs) are gen-
erally solved by finite element (FE) methods. Due to their geometric flexibility,
tetrahedral FE meshes (tetmeshes) are well suited to discretise complex shapes.
A challenge lies in generating tetmeshes with preferably few elements to keep
the complexity of the FE computations low, while accurately approximating a
given geometry. Concurrently, the elements must be of good shape in order to
ensure stability [I4]. Satisfying both criteria at a time is generally not possible,
hence a compromise must be found.

In this paper we focus on meshing of multi-material domains that represent
a combination of both smooth and non-smooth geometries. Applications com-
prise the combination of anatomical and mechanical structures like bone/implant
compounds, e.g. to predict implant wear [I0], or the necessity that feature curves
are represented explicitly. In such scenarios, an accurate representation of the
material interfaces and the non-smooth regions (sharp edges) is desirable.

Usually, the geometry of anatomical structures is derived via image segmenta-
tion as in Zachow et al. [16], while mechanical parts are represented analytically,
e.g. as CAD models. In a first step, a boundary representation of the multi-
material compound is generated, which is then “stuffed” with tetrahedra. This
typically requires an explicit fusion of the objects to be discretised before mesh-
ing, for instance using a single voxel- or surface-representation. Inconsistencies
resulting from object overlaps are resolved easily within a voxel grid like used
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by Zhang et al. [I7]. But the resulting mesh typically suffers from artificially
introduced inaccuracies, for instance lost information about sharp edges. Alter-
natively, a consistent surface triangulation that separates the different objects
(called domains) can be computed. Regions where boundary intersections in-
troduce small angles or narrow inter-boundary distances occur exhibit small or
badly shaped triangles which are not suited for generating useful FE meshes.

An alternative approach, which does not require an explicit boundary rep-
resentation, was introduced by Oudot et al. [II] and Pons et al. [12]. This
Delaunay-based method requires only the implementation of a so-called “ora-
cle” which returns the following information: (1) the material a point belongs
to, (2) one intersection of a line segment with a boundary, if it exists. However,
for geometries with non-smooth boundaries (sharp edges), this approach tends
to introduce many small elements while still not recovering the feature curves
adequately.

Boltcheva et al. [4] address feature curves that occur at the junctions of 3 or
more materials in segmented image data. They sample them a-priori according
to a user-given density parameter. Avoiding any point insertion too close to these
samples, the junctions are preserved throughout the mesh generation process.
In their approach, the point density along the feature curves is determined at
the beginning of the algorithm which opposes the self-adjusting criteria-driven
Delaunay refinement.

Very recently, Dey et al. [6] propose a method that meshes piecewise-smooth
complexes approximately defined by multi-label datasets. They provide a method
to extract the feature curves. These are incorporated in the mesh generation
process as a set of line segments protected by spheres eventually to be refined
on encroachment.

The resulting mesh quality of meshes generated by Delaunay refinement
schemes can be improved in terms of dihedral angle. Foteinos and Chrisochoides [§]
employ a refinement criterion that heuristically removes most slivers. Cheng et
al. [B] and Edelsbrunner et al. [7] propose methods to post-process such meshes.

We propose a method to extend the oracle-based approach by Oudot et
al. [1I] to preserve a user-given set of line segments. We prove that our algo-
rithm terminates while preserving any set of line segments not exhibiting angles
below 60°. Our implementation provides a hierarchical oracle that allows for
an intuitive setup if simple Boolean operations describe the mutual relations of
separate input domains. As each input domain is handled transparently through
the oracle, they can be of distinct type, e.g. voxel representation or triangular
surface, and an explicit fusion step can be omitted. A study on bone/implant
compounds demonstrates that our method simplifies the mesh generation pro-
cess and provides high quality FE meshes.

2 Preserving 1D feature lines

Delaunay triangulations of an e-sample have been shown to appropriately ap-
proximate smooth surfaces, both geometrically and topologically. Boissonnat and



Oudot [3] use these results to construct a surface mesh generator with provable
properties. From an initial point set, successive refinements lead towards a reli-
able surface approximation. They point out that their method is general enough
to handle various kinds of input, e.g. analytical implicit surface descriptions,
level sets in 3D images, point set surfaces and polyhedra, as long as some sim-
ple properties can be fulfilled to build up an oracle and provide an appropriate
sizing field. Oudot et al. [II] extend the method to the volumetric case. They
add higher dimensional refinement rules to the surface meshing method. The
resulting algorithm fully contains the surface mesh generation method and con-
secutively addresses the volumetric cells. Eventually the volumetric algorithm
falls back on the surface refinement rules. Finally, Pons et al. [I2] propose an
approach for oracle-based multi-material volume meshing. A material is assigned
to each Delaunay tetrahedron according to the corresponding Voronoi vertex, i.e.
the tetrahedron circumcenter. Moreover, they propose parameters to tune ele-
ment size and shape criteria globally or per material to simplify the application
of their algorithm.

Our method extends the set of rules proposed by Oudot et al. [II] to pre-
serve a set of constrained line segments, in the following called segments. The
segments are maintained in the conforming sense, i.e. if the algorithm attempts
to insert a point that conflicts with a constrained segment, it is split before-
hand. Oudot et al. [T1] append a meshing layer to the algorithm of Boissonnat
and Oudout [3] to tackle the volumetric elements. Analogously, we prepend a
meshing layer to the method of Pons et al. [I2] that handles the constrained
segments. Both, the surface and the volumetric layer of the algorithm are mod-
ified to eventually fall back on the constrained segment refinement rules. The
geometric and topological guarantees given by a dense sampling of the material
interfaces hold for smooth surfaces, see Amenta and Bern [2]. While this does
not necessarily conflict with our extension, its application admittedly is most
interesting at non-smoothnesses. We provide the application to non-smooth ge-
ometries in a similar manner as already is done for the original algorithm: For
instance, the non-smoothness of polyhedral input is hidden within the oracle.

2.1 Strategy to preserve constrained segments in the oracle method

Let E a set of segments to be preserved with Pg the set of their endpoints.
A segment s is called constrained if it is a segment to be preserved, i.e. iff
s € E. Note that the set E is modified during the course of the algorithm
when a segment is split. Point insertions triggered by the necessity to split a
constrained segment remove the respective segment s = (a,b) with endpoints
a,b and splitting point m from E. As a replacement the subsegments (a,m) and
(m, b) resulting from the split are inserted into E. Their preservation, resp. the
preservation of their subsegments, recursively guarantees the preservation of s
in the conforming sense. We will denote Fy = E the initial set and F; the result
of the i-th split of a segment.

A segment s with endpoints a, b and midpoint m is said to be encroached by
a point p if ||p — m| < ||la — m||, i.e. the point is in the open diameter ball of
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Fig. 1. The type of star vertices. Small points are added later. A, B,C, D are star
vertices because they all have at least two adjacent points in the initial set of endpoints.
The other points are non-star vertices.

A

the segment. This is a common notion when dealing with conforming triangula-
tions [I3]. This encroachment definition differs from the encroachment notions
for tetrahedra and Delaunay facets, because it is triggered also on point inser-
tions not necessarily extinguishing the segment from the Delaunay triangulation.
The converse is true though: If there is no point within the diametral sphere,
the corresponding segment is a simplex of the Delaunay triangulation.

The vertices p; € Pg that are endpoints of at least two constrained segments
on initialization, are called star vertices. It is a property of the input set of
vertices, i.e. no refinement point added has this property and no star vertexr
can lose it during the course of the algorithm, For each star vertex p; € P let
Imin,; the length of its shortest incident constrained segment in £. A constrained
segment is called bad, if (1) it is incident to a star vertex p; and has length
larger than lT, (2) it is incident to a star vertex and is longer than some other
segment incident to the same star vertex, or (3) if it is encroached by some point.

We chose lr‘% heuristically, assuring that the initial splits do not create ar-
bitrarily small subsegments. For an initial constrained segment s that is incident
to two star vertices, the medial subsegment resulting from the splits at each of
its ends according to (1) is not the shortest subsegment of s. We maintain the
notation of Oudot et al. [I1] where o specifies the sizing field, a the angle bound
of a facet and B the minimal radius-edge ratio.

2.2 Algorithm preserving constrained segments

The first part of the algorithm aims at recovering the constrained segments in
the Delaunay triangulation of the initial point set. To avoid non-terminating
recursive insertions around star vertices, incident segments are trimmed to a
uniform length on their first refinement triggering.



Rule set for algorithm preserving constrained segments

T1 If a constrained segment e is bad
T1.1 if e is incident to a star vertex p; and has length > l‘“‘%, insert the point

at distance l"“% from pi on e
T1.2 else insert the midpoint of e
T2 If a facet f does not have its three vertices on QO or has a surface Delaunay ball
B(c,r) with ratio 75 > o, then:
T2.1 if cis included in a segment diameter ball B(c',7’), insert ¢’
T2.2 else insert ¢
T3 If a tetrahedron ¢ with circumcentre ¢ has a circumradius r greater than o(c) or

radius-edge ratio ——— greater than B, then

Imin

T3.1 if c is included in a segment diameter ball B(c”,r"), insert its center ¢”

T3.2 else if ¢ is included in a surface Delaunay ball B(c,7') and ¢’ is included in
a segment diameter ball B(c¢”,r"), insert ¢”

T3.3 else if c is included in a surface Delaunay ball B(c',r’) insert ¢’

T3.4 else insert ¢

Rules T2 and T3 are analogues to the meshing rules proposed by Oudot et
al. [I1]. They only differ in the fallback strategy eventually refining constrained
segments on encroachment. This strategy assures the preservation of the con-
strained segments since they cannot be encroached by a point actually inserted
into the triangulation whenever T1 is fulfilled.

We explicitly prove termination of the algorithm for a decomposed version
of the RULE SET T}
The initial conformation step is independent of the actual geometry a mesh is
to be generated for. After a finite number of point insertions all constrained
segments are guaranteed to not being encroached in the Delaunay triangulation
of the successively built point set.
In a second step, we generalise the termination proof of Oudot et al. [TI] to our
extended method. We follow the common idea of deriving an insertion radius
lower bounding the mutual distance of any two points in the resulting mesh.
In this context, lower bounds on the applicable parameters are deduced. Our
proofs point out the existence of finite values for the minimal facet angle bound
« and the minimal radius-edge ratio bound B, depending on the configuration
of the constrained segments and the sizing field . Our proofs only apply to
constrained segment configurations not exhibiting angles below 7. There are no
general negative proofs on termination though, hence motivating the use of the
method also for a more practical choice of parameters.
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Fig. 2. Mesh generator module in ZIBAmira. Inputs (top): The separate domains rep-
resent distinct objects and a mesh is required for their fusion. They are connected
sequentially to the mesh generator according their priority at regions of mutual over-
lap. Additionally a set of constrained segments is connected to the meshing module. In
its current implementation, this set is a set of line segments constituting a piecewise
linear surface path defined on the ConstraintSurface wich does not serve any further
purposes; Parameters (bottom): quality criteria can be bounded by constants, defined
separately for each material. It is possible to treat a material as a cut geometry: all
points within this material are handled as points outside of any domain with same or
lower priority.

3 Implementation

An implementation of Oudot et al. [I1] and Pons et al. [I2] is available in CGAL
since version 3.5. We integrated CGAL as a module into ZIBAmira-2012.03 [15]
(http://amira.zib.de)). Our current implementation is based on CGAL 3.7 [1].

3.1 Hierarchical Oracle

An oracle has been implemented that defines the domain to be meshed. It allows
to implicitly perform Boolean operations, because the mesh generation algorithm
itself does only require the two kinds of query operations introduced by Boisson-
nat and Oudot [3]. The hierarchical oracle essentially maintains a priority list of
input domains, such that point queries are passed to lower priority domains if
they are outside all higher prioritized inputs. That way the oracle is a black box
that performs the Boolean operations on the input domains without explicitly
computing the intersections and implicitly resolving inconsistencies in data type
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and shape. The data types that can currently be handled are (1) watertight tri-
angular surface meshes with exactly two triangles joining at an edge, (2) labeled
uniform voxel grids, and (3) implicit spheres given by their resp. midpoint and
radius.

The features that are to be preserved are defined by a connected set of
piecewise linear segments. In ZIBAmira these can be defined as surface path sets
on triangulated surfaces. If specific points of the domain boundary are known
a-priori these can be added to the initial point set in order to speed up the mesh
generation process or simply to preserve them. The ZIBAmira module offers a
port to connect a geometry containing these points.

4 Experiments

We tested our method in a simulation study concerning the computation of
strains occurring in bone/implant compounds. Galloway et al. [9] generated FE
meshes for implanted tibiae (see Figure . We randomly selected one hundred
virtual total knee replacement settings from that study, including geometric
representations of the tibia and the tibial component. For each implant, the
region where protruding bone has been removed was given and sharp edges were
marked as line segments to be preserved. The one hundred datasets were then
meshed with our implementation and the method of Pons et al. [12] (available
in CGAL 3.7). For both methods the desired quality criteria were determined
heuristically and chosen as follows: (1) maximal radius-edge ratio of 1.1 for
all materials, (2) maximal circumradius of 1 mm for implant and 3 mm for
bone, and (3) maximal facet distance of 0.1 mm to approximate the surfaces for
implant and 2 mm for bone material. Despite lacking the theoretical guarantee of
termination for this choice of parameters, all models were generated successfully
without further tweaking. The results of both approaches were post-processed
by the sliver removal methods available in CGAL 3.7, see [5], [7].

The tetrahedral meshes generated with our implementation met the quality
criteria with 437,000 tetrahedra on average (range 295,000 to 707,992). The
number of tetrahedra generated with Pons approach was significantly larger with
an average number of 900,898 tetrahedra per mesh (range 614,234 to 1,533,011).
For the meshes generated by our method, the average minimal dihedral angle
was 8.72°(£1.31°) after post-processing.

5 Discussion

As shown in the experiments, our method generates fewer elements than the
method by Pons et al. with the same quality criteria applied. We attribute
this to the fact that for the original method geometric accuracy is achieved by
unguided refinement of the mesh in areas where the quality criteria are not met.
Our method specifically aims at reconstructing the requested features first due
to a more targeted point insertion during the refinement process in those areas

(see fig. [5)).



Fig. 3. Tibia implantation scenario.
Above the orange rectangle the pro-
truding bone shall be removed. Im-
plant, cutting plane and bone enter the
hierarchical oracle.

Fig.4. Resulting mesh. High geo-
metric accuracy at implant boundary
and sharp features. Mesh size grades
down where elements are far from the
implant-bone material interface.

Termination of the algorithm has not been proven for arbitrary constrained
segment configurations. The algorithm terminates if the minimal angle in the
set of constrained segments g is greater or equal to § and parameters o, B
have been chosen appropriately. Conversely our algorithm does not terminate if
the specified quality parameter «, B directly contradict the preservation of the
constrained segments, e.g. B < m where ay is the minimal angle in E. The
termination proof in its current form does not yield lower bounds for «, B in

case q is too small.

If the surface is not sampled densely enough, constrained segments might not
be present in the resulting mesh. They are guaranteed by our algorithm to be
not encroached and hence are represented in the final Delaunay triangulation.
But the resulting mesh is the union of all Delaunay cells restricted to the mate-
rials and an insufficiently dense surface sampling might cause a lack of surface
elements also involving the local segments. This problem is more general and not
exclusively related to constrained segments. But their explicit definition offers a
way to develop further refinement criteria depending on their actual presence in
the resulting mesh (i.e. we call a segment bad if it is not in the resulting mesh,
or equivalently, if there is no incident tetrahedron assigned to a material).

A set of constrained segments is not suited to accurately represent smooth
feature curves. In practice they are more likely to be approximations of the
feature curves. If features are explicitly tagged but are not close enough to the
material interface provided through the oracle w.r.t. the desired or self-induced
element sizing, then they eventually are not part of the discretised boundary.
In such settings the inaccurate constrained segments are inconsistent to the
“oracled” surface.

Our approach pushes off the problem of localizing the features as we do not
restrict to a certain input type. Moreover feature curves might address distinct



Fig.5. (a) The advancing-front approach preserves the surface triangulation, which
encloses the volumes to fill with tetrahedra. It generates distorted elements in regions
where implant and bone surface leave small gaps. (b) The Pons approach inserts many
elements in the vicinity of these gaps to accurately recover the geometry of the implant.
With the radius-edge ratio specified, that even leads to smaller elements on the bone
surface. (c¢) These problems do not occur with the guided point insertion in our method.

properties of the mesh. Among them are sharp edges (where small dihedral
angles are ultimately introduced), multi- material interfaces where 3 or more
materials meet and multi-material interfaces resulting from the implicit fusion
process. Our approach only covers some of these cases as described above.

In the original oracle-based method, non-smoothness is hidden within the
oracle e.g. when meshing polyhedral domains. It does not disturb the mesh gen-
erator if some quantities can be estimated/faked appropriately. If sharp features
are given explicitly, the dihedral angles at these junctions might jeopardise the
termination. We did not investigate such effects.

Our proof of termination is not optimal w.r.t. the lower bounds on the pa-
rameters o and B. Furthermore post-processing has not been adjusted to respect
the constrained segments.

Lastly, the advantages of the preservation of features and the effortless fusion
of different domains through the hierarchical oracle can only be used in combi-
nation if the features are not a result of the fusion process itself, i.e. they must
be known a-priori.

6 Conclusion

In this work we extend the oracle-based meshing approach. It is based on an ab-
stract domain representation and does not require time-consuming preprocessing
of the input data. We coupled the ZIBAmira software with an extension of the
oracle-based meshing approach. ZIBAmira allows to load, align and visualise the
data describing the domains to generate a mesh for. Feature curves can be defined
as so-called path sets. The hierarchical oracle currently allows triangle meshes,
label images and implicit spheres as input. The overlaps and mutual inconsisten-
cies of the data can be solved without the need to explicitly compute a consistent
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representation. The hierarchical oracle overrides the tedious and error-prone pro-
cess deriving a single multi-material surface or comparable. Quality parameters
such as element size and shape bounds can be applied material-wise. The result-
ing mesh will respect the desired criteria and additionally preserve the feature
curves as prescribed.

Future work will be directed towards generalizing constraint configurations
and finding improved termination bounds. Smooth feature curves shall be in-
corporated in the meshing approach. It would be nice to have an algorithm ex-
tracting the features with the current oracle methods only or with a new oracle
assumption as simple as the existing. This would eventually enable to specifically
address features that evolve from fusion implicitly. The recent method by Dey
et al. [6] seems to be advantageous to our approach but also does not solve this
issue that comes up when using our hierarchical oracle.
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