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Fig. 1. From left to right: Deformable tetrahedral model of the pelvic bone enriched with density information, virtual X-ray projection
of the mean model, two projections of the deformed model showing variation in both shape and density.

Abstract— We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These
meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical
shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic
bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections
are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy
depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral
meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density
distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our
novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with
respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU
scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles
in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will
improve treatments in orthopedics, where 3D anatomical information is essential.

Index Terms—Digitally reconstructed radiographs, volume rendering, mesh deformation, statistical shape and intensity models,
image registration, GPU acceleration

1 INTRODUCTION

Despite the increasing availability of 3D image acquisition meth-
ods like computed tomography (CT) or magnetic resonance imaging
(MRI), traditional 2D X-ray projections (in the following only called
X-ray images or X-rays) are widely used for diagnosis or treatment
planning in orthopedics. X-rays are especially suited to judge on the
condition of bony structures, since bone is well distinguishable from
surrounding soft tissue in the images. They are mandatory for imag-
ing of weight-bearing situations and are applied for dynamic imaging
of joint motion (fluoroscopy), neither of which can be performed in
tomographic imaging. In addition, 2D X-ray imaging is widely avail-
able, rather inexpensive and exposes patients to less radiation com-
pared to CT.

The reduction of dimensionality occurring while taking an X-ray,
however, can lead to ambiguities in the image. In general, determin-
ing the 3D anatomical structure and pose from a single 2D X-ray im-
age is an ill-posed problem. There are often uncertainties for example
regarding the distance of an anatomy from the X-ray source and its
scale (out-of-plane error). Structures project such that their order of
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appearance along the beam direction and their separation from each
other remains unclear. Even for an experienced human observer, these
ambiguities are hard to resolve [17].

The computer-aided reconstruction of a patient’s 3D anatomy based
on a single or few X-ray images has therefore received increasing in-
terest in recent years [1, 21, 23, 24]. Zheng et al. [24] for example
showed that by pose estimation of the pelvis from a single postop-
erative X-ray, its cup orientation with respect to the anterior pelvic
plane can be predicted accurately. Their method aims at evaluating to-
tal hip replacement, where the assessment of the cup orientation plays
an important role in the verification of the surgical outcome. Other
applications include the diagnosis of osteoporosis from dual-energy
X-ray absorptiometry (DXA) [21] or knee-joint motion tracking from
a series of fluoroscopic images without a-priori knowledge about the
patient-specific anatomy (e.g. CT).

A common concept of many 3D reconstruction approaches is to
project a large amount of variations of a 3D shape onto the image
plane, assuming an X-ray acquisition setup, i.e. a relative position of
an X-ray source to a detector of particular size. The projections are
then compared to a patient’s clinical X-ray to find the projected shape
that best represents the 2D information depicted in the reference im-
age. This shape is assumed to be the best approximation of the true
3D anatomy.

We are developing an anatomy reconstruction framework that em-
ploys a shape and intensity based registration approach. The idea is to
increase the robustness of the reconstruction process by considering as
much information about the anatomy of interest in the reference X-ray
as possible, including the interior density information of anatomical



Fig. 2. A 3D model of the proximal femur (upper thigh bone) that incor-
porates volumetric density information (a). Compared to a projection of
contour lines (b), a virtual X-ray (c) depicts the internal density structure
of the bone and therefore better resembles the femur in the clinical
X-ray (d).

structures. For this purpose, we project virtual X-ray images, often
referred to as digitally reconstructed radiographs (DRRs), from many
variations of a volumetric tetrahedral mesh with associated density in-
formation. The mesh is deformed prior to each projection such that
it represents plausible candidates for a patient-specific shape and den-
sity distribution of the anatomy of interest. Our method searches for
the best candidate fit by comparing the anatomy’s X-ray attenuation in
the clinical X-ray to the pixel intensities of the virtual X-ray.

Intensity-based registration methods are known to be prone to local
optima due to the non-convex nature of the similarity measures (see for
example [12]). Our framework evaluates many anatomical shape can-
didates in order to improve the reconstruction quality by identifying
the best among several locally optimal solutions. It consequently has
to produce large quantities of virtual X-rays (e.g. 104 or more images).
An essential goal therefore is to quickly compute both deformed volu-
metric geometries and their corresponding projections. In addition, the
virtual X-rays should depict the density information of the anatomy of
interest as accurately as possible to allow for intensity-based compar-
ison with the clinical X-rays.

This paper presents a GPU-only method that achieves these goals
and thereby enables fast and robust intensity-based geometry recon-
structions from X-rays. Its main contributions are:

• A GPU-algorithm for fast rendering of tetrahedral meshes with
higher-order polynomial density functions. Our approach sim-
plifies the tessellation of tetrahedra and can be implemented on
the GPU without any explicit branching or looping (Section 4).

• A method that varies (deforms) both anatomical shape and den-
sity information on the GPU and concurrently generates virtual
X-ray images from the deformed anatomy model (Section 5).

• A comparison to existing projected tetrahedra (PT) approaches.
Our method achieves comparable quality to ground truth at
higher frame rates (Section 7).

We present first promising results of our novel method within the
developed 3D reconstruction framework in Section 8. A conclusion is
given in Section 9.

2 RELATED WORK

Existing approaches for the reconstruction of 3D anatomy from X-ray
images often employ deformable surface models in combination with
contour-based distance measures [1, 2, 23, 24]. Although contours or
silhouettes of 3D anatomical models can be computed very efficiently,
their correspondent contours/silhouettes are often difficult to extract
from the patient’s X-ray. Using contour information only neglects im-
portant information on the interior structures (i.e. bone density). For
instance, cortical (compact) bone that typically forms the outer hull
of a bony anatomy has a much higher X-ray absorption than spongy
(cancellous) bone inside (cf. Figure 2).

Lamecker et al. [6] propose a method for 3D shape reconstruction
that generates thickness projections of a deformable surface model,

approximating bone by a homogeneous material. They conclude that
the evaluation of intensity information improves the reconstruction but
that thickness images do not sufficiently represent the heterogeneity
of bony structures. One solution is to render high-resolution CT-like
atlases that contain density information of the anatomy of interest.
In [19] for instance, DRRs are generated from deformable hexahe-
dral grids modeling the proximal femur. These projections are more
suitable for intensity-based comparison to clinical X-rays, since they
mimic the X-ray absorption in inhomogeneous anatomical structures.
However, a dense sampling of intensity information in the atlas is re-
quired to accurately project bone mineral density, thus degrading the
performance of the deformation and projection. Laney et al. [7] have
shown how to accelerate the generation of radiographs from hexahe-
dral grids using GPU-based volume rendering techniques.

With Fourier volume rendering [9], a method has been proposed
to efficiently generate DRRs from datasets of high resolution. These
techniques require a transformation of a deformed CT-like atlas into
the frequency domain, e.g. through a fast Fourier transform (FFT).
Since the model is deformed frequently but typically only few pro-
jections (often only one or two) are generated per deformed model,
Fourier rendering becomes impractical for the reconstruction process.

An adaptive sampling of the interior densities of anatomical struc-
tures using unstructured meshes has been suggested. Yao [22] pro-
poses higher-order Bernstein polynomials as an efficient way to
encode density information on tetrahedral meshes. He represents
anatomical structures as deformable point distribution models (PDM)
that incorporate density values learned from CT data. In addition, Yao
suggest a CPU-based projection algorithm that respects the non-linear
density distribution in each tetrahedron and generates virtual X-rays
for intensity-based reconstruction processes.

Sadowsky et al. [14, 15] build upon the idea of Yao and simulate
X-ray images using a projected tetrahedra (PT) approach [18]. Their
algorithm makes use of two observations: First, the tetrahedra can be
processed independently from each other and do not have to be pro-
jected in visibility order. Second, barycentric coordinate systems can
be applied to integrate the Bernstein polynomials in closed form and at
the same time classify the projected outline of the tetrahedra. The out-
line classification is used to tessellate the projected tetrahedra and to
determine ray parameters in barycentric and world coordinates on the
front-facets of the individual tetrahedral cells. In the fragment shader
stage of the graphics hardware, a perspective correction mechanism
is applied to obtain the respective back-facet parameters. The poly-
nomial density functions are then integrated in closed form and the
overall X-ray attenuation is accumulated in the framebuffer according
to the Beer-Lambert law of attenuation (see Equation 1).

The implementation presented by Sadowsky et al. performs both
the deformation of the tetrahedral volume as well as the classifica-
tion of its projected outline on the CPU. Consequently, the geometry
and density information has to be copied to the GPU memory after
the model is altered. Although GPU implementations for classify-
ing projected tetrahedra exist [10, 11], they introduce branching and
looping operations that have a negative effect on the overall rendering
performance. The method proposed here instead adapts the idea of
cell-based ray casting [4, 20] and relies on efficient ray-tetrahedron in-
tersection tests in barycentric coordinates without prior classification.
Moreover, we propose a method to combine both the deformation of
tetrahedral meshes as well as their projection on the GPU.

3 BACKGROUND

The overall attenuation encountered by a monochromatic X-ray beam
p(x) = win +(wout −win) ·x passing through tissue is described by the
Beer-Lambert law:

Iout = Iin · e
−
∫

p(x) α(w)dw
(1)

where Iin/Iout are the input/output intensities of the beam, win and wout

are the entrance and exit points, and µ = α(w) denotes the linear at-
tenuation coefficient of some homogeneous tissue encountered by the
ray at point w. The function α is referred to as the density distribution
of an anatomical structure.
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Fig. 3. Actual density distribution from CT data (a) and its approxima-
tions with Bernstein polynomial density functions of degree d = 1 (b),
d = 2 (c) and d = 3 (d). The non-linear gray value distribution of the CT
dataset is better approximated by polynomials of higher degree.

Following previous work [14, 15], we cast a monochromatic beam
from the X-ray source to each pixel in the image plane. The spatial
location of the source corresponds to the camera position in a per-
spective projection of the anatomy, where each pixel is assigned the
intensity Iout of its associated beam after attenuation by the anatomi-
cal structure. Artifacts, however, that may occur due to scattering or
beam hardening, are not considered in this attenuation model.

3.1 X-ray attenuation in tetrahedral meshes

We model anatomical structures using tetrahedral meshes according to
the proposal of Yao [22]. Each cell in the mesh is associated with one
Bernstein polynomial function that describes the density distribution
at its spatial location in the anatomy.

A Bernstein polynomial of degree d is parametrized per tetrahedron
t by Bernstein coefficients ct = {ci, j,k,l} with i+ j+ k+ l = d. Given

a point b = (bx, by, bz, bw)
T in local barycentric coordinate space of t,

the corresponding linear attenuation coefficient calculates as

αt(b) = ∑
i+ j+k+l=d

[ci, j,k,lB
d
i, j,k,l(b)] (2)

where

Bd
i, j,k,l(b) =

d!

i! j!k!l!
(bx)

i(by)
j(bz)

k(bw)
l (3)

is the Bernstein basis function of degree d.

The number of Bernstein coefficients assigned per tetrahedron de-
pends on the degree of the polynomial that is used to describe the
density distribution:

(

d+3
3

)

, with n = 1,4,10,20 for degrees d =
0,1,2,3 respectively. By applying higher polynomial degrees, non-
homogeneous density distributions can be expressed in a single tetra-
hedron (cf. Figure 3).

To accumulate the attenuation encountered by a ray p(x) passing
through a tetrahedron (cf. Figure 4) the Bernstein polynomial density
distribution is integrated along the ray:

∫

p(x)
αt(b)db = ||wout −win|| · ∑

i+ j+k+l=d

[ci, j,k,l

bout
∫

bin

Bd
i, j,k,l(b)db] (4)

We refer you to Yao’s work for a detailed closed form solution of
Equation (4).

Fig. 4. Ray parameters on a single tetrahedron. The ray originates at
the source eeye,beye, intersects the tetrahedron at win,ein,bin, traverses
the tetrahedron by length wlength and exits at the point wout ,eout ,bout . The
letter w stands for world coordinates, e for normalized eye coordinates,
and b for local barycentric coordinates.

3.2 Statistical shape and intensity models (SSIMs)

An SSIM, as employed in this work, is a statistical model of shape and
intensity (or density) that is generated from a set of training meshes
by means of a principal component analysis (PCA). Each training
mesh represents a patient-specific anatomy according to the tetrahe-
dral model described in the previous subsection. The SSIM combines
the mean shape and density of all training data and their specific vari-
ations, which are expressed in the PCA eigenvectors. We reuse the
notation of Yao [22], who describes an SSIM as:

Y = Ȳ +Pr (5)

Here, Y = [Ys,Yµ ] denotes an SSIM instance (i.e. a representative
of the training set) with tetrahedral vertex positions Ys and coefficients
Yµ to Bernstein polynomial density distributions of a fixed degree. Ȳ
represents the mean model and P is the eigenvector matrix that holds
information about the anatomical variation of the training data. The
number of eigenvectors (and parameters) depends on the number of
training data that are incorporated into the SSIM, and the contents of
the eigenvectors are related to the deviation from the average shape
and density distribution. The mean model is deformed by selecting
values for the deformation parameters r and evaluating Equation (5).
To reduce the model’s parameter space, only a subset of eigenvectors
can be regarded during deformation, e.g. those eigenvectors that de-
scribe the largest variability in the training data. Using the full set
of deformation parameters leads to the maximum level of detail that
instances of the SSIM may exhibit.

We apply this type of deformable volumetric model since SSIMs are
capable of representing a set of anatomical shapes with associated den-
sities in a compact form and allow for a plausible interpolation within
this set. However, SSIMs do depend on the choice of training data that
are integrated therein. An SSIM cannot represent any possible patient-
specific anatomy in full detail but will rather be a approximation. For
example, pathologies are not expressed by the model, unless they are
contained in the training data. SSIMs are well suited for application
scenarios such as pose estimation or for an extraction of anatomical
landmarks or mechanical axes, where a perfect representation of the
patient-specific anatomy is not necessary.

4 GPU-BASED ALGORITHM FOR PROJECTING MESHES

According to Equations (1) and (4), the total attenuation encountered
by an X-ray depends on the ray traversal length wlength = ||wout −win||
and its entrance and exit points in local barycentric coordinates bin and
bout for each tetrahedron that is intersected by the ray (cf. Figure 4). In
addition, the Beer-Lambert law states that the total attenuation equals
the accumulated contributions of all tetrahedra along the ray, irrespec-
tive of the order they are traversed (”visibility order”). Our GPU-based



Fig. 5. Intersection of an X-ray with a cell (e.g. a triangle). The ray
originates at the X-ray source beye and traverses the cell between bin

and bout with direction braydir = beyedir ·s. Our intersection test determines
three candidates for s that correspond to the intersection points with
cell edges. Discarding the entrance point itself, the correct solution for
s = s1 is located at minimum distance to the X-ray source.

algorithm for simulating X-ray attenuation in tetrahedral meshes ex-
ploits these properties by independently processing each tetrahedron
of the mesh in parallel.

We stream the tetrahedra and corresponding Bernstein polynomial
coefficients through the per-vertex, per-geometry and per-fragment
stages of the graphics pipeline. The entrance parameters of the rays
on the front-facets of the tetrahedra, such as bin, are interpolated lin-
early between tetrahedral vertices. The rays’ exit parameters bout and
their traversal depths wlength are computed in the fragment stage using
direct ray-facet intersection tests in barycentric coordinates. Both the
entrance and exit parameters are then applied to integrate the Bernstein
density functions, cf. Equation (4), in closed form using per-fragment
operations, as proposed by Sadowsky et al. in [14]. The contributions
of all individual tetrahedra are finally blended together to form the vir-
tual X-ray image.

4.1 Computing the rays’ entrance parameters

In a first processing step, per-vertex operations transform the tetrahe-
dral vertices into normalized device coordinates and eye coordinates
(ei). The vertex positions are then handed to the per-geometry pro-
cessing stage together with the Bernstein coefficients of the respective
tetrahedron.

The per-geometry operations construct the matrix
M = [e0, e1, e2, e3]. Its inverse M−1 is a linear transformation
that projects eye coordinates into the local barycentric coordinate
space of the respective tetrahedron. The method of Sadowsky et al.
utilizes M−1 in order to classify the projected tetrahedral outline.
We apply M−1 to compute four vectors beyedir, each pointing from
the source (e.g. the eye position) to one of the four tetrahedral
vertices: beyedir = bi −M−1 · eeye. An additional processing step then
determines their eye space correspondences eeyedir = eeye − ei = −ei.

Note that eeye = (0,0,0,1)T .

Consecutive operations in the per-geometry stage triangulate the
tetrahedron into its four facets. The values of bi, beyedir and eeyedir

are assigned as parameters of the respective facet’s vertices. They are
linearly interpolated within the front-facets of the tetrahedron, thus
making the perspective-correct entrance parameters of all rays inter-
secting the tetrahedron available in the fragment stage. We utilize the
culling functionality of graphics hardware to discard the rasterization
of tetrahedral back-facets. The Bernstein coefficients are pushed down
the GPU pipeline as non-varying parameters.

In contrast to PT approaches, the triangulation of the tetrahedra
is view-independent. Our method does not determine a thick point
(see [15]) and avoids computing line intersections or sorting vertices
into rendering order.

4.2 Computing the rays’ exit parameters

Given the front-face parameters bin, beyedir and eeyedir of a ray, the
goal is to find the exit parameter in barycentric coordinates bout and the
traversal length wlength (cf. Figure 4). In the following, bi, j denotes the

jth component of the vector bi. Keeping in mind that local barycentric
coordinates of a tetrahedron are non-negative and sum up to one, we
observe the following:

1. At least one component of bin and of bout equals zero, since
bin and bout are located on the facet of a tetrahedron: ∃i.bin,i =
0,∃ j.bout, j = 0.

2. In the “regular” case, a ray enters and exits a tetrahedron on two
distinct facets, on opposite edges or on opposite vertices. This
implies, that one zero component of bin has a different index
than the zero component of the corresponding bout : ∃i.(bout,i =
0∧bin,i > 0).

3. As an exception from (2), the ray might enter and exit on the
same vertex. In this case the traversal depth wlength is zero and
the ray is not attenuated.

We model the ray between the barycentric entrance and exit points
of a tetrahedron as braydir = bout − bin. Since the vectors braydir

and beyedir lie on the same ray of sight, braydir can be calculated by
braydir = sbeyedir with a positive factor s. The barycentric exit coordi-
nates of a ray then compute as

bout = bin + sbeyedir (6)

According to (1), we know that at least one component of bout is
zero. Consequently, there exist four possible candidates for s, given
that the parameters bin and beyedir are known:

si =−
bin,i

beyedir,i

(7)

The si represent solutions for intersecting the ray with all four tetra-
hedral facets.

To find the correct intersection si, all results with beyedir,i ≥ 0 or
bin,i = 0 are ignored. Among the remaining candidates, the smallest
positive si is the correct solution for s (cf. Figure 5). If no candidate is
found, then s = 0 and therefore bin = bout . In the following section we
present a shader implementation that computes s−1 using only three
vector operations.

Once the transformation factor s is determined, we use it to com-
pute the actual exit point of the ray on the tetrahedron bout accord-
ing to Equation (6). Given bout , it would now be possible to de-
termine eout by applying the transformation matrix M and determine
wlength = ||eout − ein||. However, we propose a more efficient method
based on the fact that s also scales the ray direction vector in normal-
ized eye coordinates to the traversal length of the ray (s is positive):

wlength = ||eout − ein||

= ||M · (bout −bin)||

= ||M · (braydir)||

= ||M · s · (beyedir)||

= s · ||eeyedir||

(8)

Our algorithm computes wlength according to Equation (8), apply-
ing the interpolated eeyedir. Given bout and wlength, all parameters
are available to solve the rendering integral, Equation (4), in the per-
fragment stage. The attenuation encountered by the ray is then re-
turned as the fragment color and can be summed up (e.g. blended)
with the contributions of other tetrahedral cells in the mesh.



5 GPU IMPLEMENTATION

In this section, we first propose an efficient implementation of our
algorithm to render static tetrahedral meshes with higher-order density
functions that was introduced earlier. The rendering pipeline is then
extended to deform the tetrahedral meshes in parallel on the GPU.
We implemented the rendering pipeline based on OpenGL version 4.0,
featuring the OpenGL Shading Language (GLSL) as of version 4.00.

5.1 Projecting tetrahedral meshes

In the following, we describe the rendering process for a single tetra-
hedral cell in the mesh. To generate the final image, i.e. accumulate
the attenuation of all tetrahedra in a 2D texture, we set the OpenGL
blending functionality to glBlendFunc(GL ONE, GL ONE), gl-
BlendEquation(GL FUNC ADD) and bind a framebuffer object
(FBO). Taking the exponential of the summed-up contributions in the
2D textures is then performed in the post-processing step using an ad-
ditional rendering pass.

We issue one GL POINT primitive per tetrahedron. The respec-
tive tetrahedral vertex positions in world coordinates and the Bernstein
coefficients describing the density function are assigned as point ver-
tex attributes. A vertex shader is executed once for every tetrahedron
(GL POINT primitive), and therefore has access to the four vertex
coordinates. It performs the transformation into normalized eye and
device coordinate space. The transformed vertices and the Bernstein
coefficients are then streamed further down the rendering pipeline.

In the geometry shader stage, M−1 is computed using the GLSL
inverse() call on M = [e0, e1, e1, e3]. We experienced that under
certain views the matrix M becomes nearly singular, for example when
the rendered mesh is located far from the source and covers few pixels
in the image plane. This is not a problem in the reconstruction frame-
work, as such situations won’t occur in a clinical X-ray setup. One
might alternatively use the 64Bit precision inverse operations on the
OpenGL dmat matrix types which eliminate the problem.

We compute −beyedir in one vector operation, exploiting that the bi

are equal to zero in all but one component. A small offset is added to
the zero components of the bi afterwards in order to circumvent divi-
sion by zero in the fragment shader stage. The tetrahedron is decom-
posed into its four triangle facets and the ei, bi and −beyedir are linearly
interpolated in between the geometry and fragment shader stages.

The fragment program performs the ray-tetrahedron intersection

tests by solving for si
−1 =

−beyedir,i

bin,i
rather than si. The correct inter-

section at s−1 is the maximum of all four possible candidates and
is extracted using two max() calls. To obtain bout and wlength, we

divide by si
−1 instead of multiplying with si, cf. Equation (6) and

Equation (8). Note that the intersection candidates for bin,i = 0 and
beyedir,i ≥ 0 do not contribute to the overall attenuation since wlength

becomes (practically) zero or the corresponding si
−1 becomes nega-

tive and is therefore discarded. Finally, we utilize hard-coded multino-
mial factors as proposed in [14] to solve the volume rendering integral,
Equation (4), in the fragment shader stage.

Our method requires less than four vector or matrix operations in
the geometry shader stage to compute all variables for tessellation.
Compared to the PT method proposed by Sadowsky et al. [14], this
significantly reduces the number of per-geometry operations while in-
troducing at most three additional fragment operations.

5.2 Combining deformation and projection

To deform and project a tetrahedral mesh entirely on the GPU, a statis-
tical model is varied in the vertex shader stage and the resulting model
instance projected in the consecutive stages. We store the SSIM in
the graphics hardware memory. Our implementation utilizes OpenGL
texture buffer objects (TBOs) to hold the mean vertex coordinates Ȳs

and the mean Bernstein coefficients Ȳµ . Their components can be ac-
cessed using unique vertex identifiers and unique tetrahedron identi-
fiers respectively.

The eigenvector components of the vertex positions and of
the Bernstein coefficients are each split in one texture array
(GL TEXTURE 2D ARRAY). Every eigenvector maps to exactly one

2D texture where the respective eigenvector components are stored
consecutively. Additionally, two vertex arrays hold the static tetra-
hedral indices and the corresponding vertex indices. The width and
height of the 2D eigenvector textures and the number of eigenvectors
are handed to the shader stages as uniform parameters.

In the vertex shader stage, the mean values are extracted from the
samplerBuffer (TBO) using the current tetrahedral and vertex ids.
The normalized texture coordinates for accessing the eigenvector tex-
tures are then precomputed, applying the uniform texture width and
height. Afterwards, the vertex shader varies both vertex positions
and Bernstein coefficients according to Equation (5). The “deformed”
tetrahedron is then projected in subsequent shader stages by applying
the projection method introduced in the preceding section.

To avoid multiple deformation of vertices that are shared between
tetrahedra, a preliminary rendering pass is issued that only performs
the geometric deformation. Here, the OpenGL transform feedback
buffer is utilized to avoid data exchange between CPU and GPU.
One primitive is rendered per vertex, and the deformation of the ver-
tex positions is computed in the vertex shader stage. The imple-
mentation discards the fragment rasterization using the OpenGL gl-

Enable(GL RASTERIZER DISCARD NV) functionality. Rather
than putting the result on the screen, the deformed vertices are stored
directly on the GPU. They are then bound to the shader programs as
vertex buffer objects in a second rendering pass. A different vertex
shader program varies the Bernstein coefficients and proceeds with
the projection accordingly.

6 RECONSTRUCTION FRAMEWORK

Within the 3D reconstruction process, the transformation and defor-
mation parameters of the SSIM are optimized with respect to the sim-
ilarity measure. Our framework utilizes a normalized mutual infor-
mation metric (NMI) [13] between the virtual X-ray projection of the
deformed/transformed SSIM and the clinical X-ray. We chose NMI
instead of mean squared differences or other intensity-based measures
since it is robust against overlapping structures and artifacts in the clin-
ical X-ray images that are not present in the virtual X-rays.

To further increase the robustness of the similarity evaluation, we
currently segment the anatomy of interest from surrounding soft tis-
sue in the reference image and additionally mask out pathologies and
implants covering the anatomy. The tissue (that does not overlap with
the anatomy in the image) is replaced by a black background such that
the reference X-ray more resembles a virtual X-ray projection. The
masked out regions in turn are ignored for the evaluation of the simi-
larity measure.

The mean model of the SSIM is positioned roughly in the virtual
X-ray setup to initialize the optimization process. A gradient descend
method then searches for the best fit between virtual and clinical X-
ray. Before each optimization cycle, the gradient of the similarity mea-
sure in terms of transformation and deformation parameters is approx-
imated based on finite-differences. We perform a line search along the
direction of the gradient to find an improved model fit, that again acts
as an initialization for the next cycle. The method is described in more
detail in our previous work [2].

The gradient descend method is prone to local minima and there
is no guarantee that a global maximum of similarity is reached. To
avoid local optima in early stages of the optimization, we sub-sample
the clinical X-ray images and perform the similarity evaluation on a
reduced image resolution while fitting the model with only a subset
of the deformation parameters. This prevents the optimization from
getting stuck in local minima due to subtle image details. The resolu-
tion as well as the number of deformation parameters are increased in
later optimization cycles, where it is important to consider finer image
details to enhance the model fit. Once a (local) optimum is found, a
new set of cycles can be triggered to again widen the search window
and increase the chance of reaching a better solution.

6.1 Integration of the GPU solution

We deform and project the SSIM on the GPU after each parameter
change and read the virtual X-ray image back to main memory for sim-



Fig. 6. A mesh of approximately 174k tetrahedra generated from the
dragon dataset for performance evaluation (a). Whereas individual
tetrahedra can be identified in virtual X-ray images generated with
density functions of degree d = 0 (b), they are not distinguishable in
d = 2 projections (c) due to a better approximation of the dragon’s
shape by higher-degree density polynomials.

ilarity evaluation. The deformation parameters are transferred to the
GPU prior to a deformation/projection of the model using a TBO and
by setting the modelview matrix accordingly. Three rendering passes
are then issued, implementing the GPU-processing steps described in
Section 5: First the vertex positions are deformed and written into the
transform feedback buffer, then the density functions are varied and
the deformed mesh is projected, and finally the exponential is taken of
the result according to the Beer-Lambert law.

Note that the SSIM is deformed and projected entirely on the GPU.
For every transformation/deformation cycle, only the deformation pa-
rameters, the model view matrix and the rendered image are trans-
ferred between main memory and GPU memory.

7 EXPERIMENTS AND RESULTS

We evaluated the projection algorithm and the combined deformation
and projection method in terms of their rendering speed. Addition-
ally, we compared the rendering quality of our projection approach
to ground truth DRRs that were generated via ray-casting of regular
scalar fields, given by CT datasets of high resolution. The experiments
were performed on two computer systems: System-1 was equipped
with an NVIDIA GTX680 graphics card and a 2.67 GHz Intel Xeon
CPU with four cores (eight threads). System-2 was featured with an
NVIDIA GeForce GTX 570 graphics hardware and a six-core (twelve
threads) Intel Xeon CPU running at 3.47 GHz clock speed.

7.1 Rendering performance

Our goal in the rendering performance evaluation was to compare the
method of Sadowsky et al. [14] to our approach in terms of projec-
tion speed on the GPU. In the original implementation proposed by
Sadowsky, the classification of the projected tetrahedral outline is per-
formed on the CPU, making a direct comparison of the two approaches
difficult. For that reason, we reimplemented the classification as GPU
geometry shader programs, following the hardware-assisted PT ap-
proach presented in [11]. This way, Sadowsky’s original algorithm,
including the outline classification based on barycentric coordinates,
was not altered and ported directly to the GPU. We employed GPU op-
timizations such as hardware-accelerated vector and copy operations
wherever applicable.

We tested the rendering performance on tetrahedral meshes with
varying number of cells. The Stanford dragon1 surface was first con-
verted into an artificial high-resolution voxel dataset. Bernstein poly-
nomials of degree d = 0 to d = 3 were sampled from the voxel data
onto spherical volume meshes with equal diameter but varying mesh
resolution between 17k tetrahedra and 4M tetrahedra (see Figure 6 for

1Source: Stanford University Computer Graphics Laboratory, The Stanford

3D Scanning Repository

an example). The spherical shape guarantees a constant pixel coverage
on the image plane when changing the viewing direction.

We recorded the rendering speed while rotating the camera around
the data in 12 degree increments. Therefore, in total 30 projections
were generated per tetrahedral mesh and polynomial degree for a full
360° trajectory. The viewport of size 10002 showed a constant pixel
coverage of 75%.

The results are depicted in Figure 7 for System-1 and System-2
in terms of rendering time in milliseconds. Both implementations
reach projection rates above 10 frames per second (fps) when render-
ing meshes of up to 670k tetrahedra. However, our rendering method
scales better with respect to the number of tetrahedra. On System-1 for
example, the algorithm proposed in this work is 0.5-2.7 times faster
than the PT method when rendering meshes of 468k to 2.8M tetrahe-
dra and density functions of degrees d = 2 and d = 3. Our method
projects meshes of higher resolution, e.g. 1.2M tetrahedra and degree
d = 2, at frame rates above 40 fps.

7.2 Deformation and projection

We evaluated the rendering speed of our GPU-based deformation and
projection approach in order to compare its performance to previous
methods that deform the tetrahedral volume on the CPU. For this pur-
pose, we created an SSIM from 47 CT datasets with an approximate
resolution of 0.9× 0.9× 1mm3 that were available from a previous
study [16]. For each dataset, a polyhedral model of the pelvis was
generated with vertex correspondences over all training datasets. We
then transferred a reference volumetric mesh consisting of 195k tetra-
hedra to each individual anatomy. After sampling the CT data with
density distributions of all four polynomial degrees, we applied the
PCA on the resulting 47 tetrahedral meshes, incorporating the density
information as described in Section 3.2.

The combined deformation and projection performance of our im-
plementation was recorded on System-1 while rendering the SSIM
onto a 10002 viewport in anterior (frontal) view. A number of 0 to
46 eigenvectors were considered and 100 combined deformations and
projections issued for every set of deformation parameters. We ran-
domly chose the parameter values equally distributed within the range
of the minimum and maximum values of the training data. To pro-
vide a comparison to CPU approaches, we measured a multi-threaded
(eight threads) deformation on the CPU as well as a hybrid CPU/GPU
implementation of Sadowsky’s approach, in which the model is first
deformed on the CPU, and then projected on the GPU as described
previously. We applied the OpenMP framework to parallelize the de-
formation such that each thread independently varies one model com-
ponent, e.g. a vertex position or Bernstein coefficient, at a time.

The results of the evaluation are given in Figure 8 in terms of du-
ration in milliseconds per deformation/projection cycle (referred to as
the rendering time). Our GPU-based approach deforms and projects
the tetrahedral meshes more than 45 times per second in all experi-
ments. The CPU-based deformation time increases significantly faster
with respect to the number of deformation parameters applied to the
model. Note that the number of deformation parameters corresponds
to the number of linear combinations performed with the eigenvectors
in Equation (5). When regarding more than 40 deformation parame-
ters and higher polynomial degrees of the density function (d = 2 and
d = 3), our GPU approach is 6 to 7 times faster than a multi-threaded
deformation on the CPU that does not account for the projection time.
A comparison of the GPU approach to the hybrid implementation re-
veals a performance gain of even 8 to 9 times in the same scenario.

7.3 Comparison to DRR from CT

To assess the rendering quality, we compared our projection approach
to ground truth images that were generated from clinical CT data of
a pelvis (resolution 512× 512× 531). We first segmented the pelvis
and extracted tetrahedral meshes of four resolutions (20k, 58k, 252k
and 731k tetrahedra) with density functions sampled from the original
CT data. The meshes served as input data to our projection method.
Ground truth images were then projected from the CT data by means
of a ray-casting approach, masking out the surrounding tissue of the



Fig. 7. Rendering performance (in milliseconds, averaged over 30 measurements) when generating virtual X-rays from the dragon datasets.
Depicted here are the rendering times of both Sadowsky’s projected tetrahedra (PT) method as well as our approach, recorded for tetrahedral
meshes of various resolutions and density functions (degrees d = 0 to d = 3) on System-1 and System-2.

Fig. 8. Rendering time (in milliseconds, averaged over 100 experiments) of our GPU-based deformation and projection method. The experiments
were performed on System-1 using a pelvis SSIM that incorporates density functions of polynomial degrees d = 0 to d = 3. The CPU measurements
(blue) account for multi-threaded deformations on the CPU only and do not include the time required to project the model. Also shown is the
performance of a hybrid CPU (deformation) and GPU (projection) method that was implemented based on previous work.

d=0 d=1 d=2 d=3

20k rms 0.085 0.072 0.070 0.068

abs 0.058 0.048 0.047 0.044

58k rms 0.058 0.046 0.042 0.038

abs 0.042 0.034 0.030 0.026

252k rms 0.043 0.035 0.030 0.027

abs 0.031 0.025 0.020 0.017

731k rms 0.035 0.029 0.025 0.024

abs 0.025 0.020 0.015 0.014

Table 1. Root mean square and mean absolute error between X-rays
from model instances and ground truth projections from the segmented
pelvis CT (depicted in Figure 9). The maximum pixel intensity in the
ground truth image is 0.993.

pelvis. The ray-caster is a GPU implementation of the algorithm de-
scribed in [5] that accurately solves the Beer-Lambert law for every
pixel in the image plane.

During experiments, the viewport was set to a resolution of 10002

pixels with the projected pelvis covering 38% of the viewport pixels in
anterior view. Similar to [14], we measured the quality of the projec-
tions generated with our method in terms of RMS distance and mean
absolute error to the ground truth. Only those pixels were regarded in
the distance measures that were either covered by the projected pelvis
in the ground truth or in the virtual X-ray image compared to it.

Table 1 summarizes the results and Figure 9 provides example pro-
jections and difference images. Note how the image quality increases

with higher degrees of the polynomials on a fixed mesh resolution.

We repeated the experiments and evaluated the projections gener-
ated with the GPU implementation of Sadowsky’s method. The re-
sults are almost identical to those of our approach, differing by at most
7×10−5 in terms of RMS distance.

8 DISCUSSION

The performance of our approach (in terms of rendering speed) ex-
ceeds those of the PT method when increasing the resolution of the
rendered tetrahedral mesh to more than 335k cells. We attribute this
to the reduced number of per-geometry operations and the lack of
branching and looping in our approach. The per-geometry operations
are executed for every tetrahedral cell and consequently more oper-
ations are performed the more tetrahedral cells are projected. When
large numbers of tetrahedra are rendered, our GPU-approach benefits
from executing fewer operations compared to PT. This is what we were
aiming for in order to apply anatomical models of high resolution in
the optimization process. From Table 1, we conclude that increasing
the tetrahedra count, e.g. to 700k tetrahedra for a pelvic model, does
have a positive influence on the projection quality and is thus desirable
for future SSIMs.

On smaller mesh resolutions, per-fragment operations dominate the
computation of virtual X-rays and the two methods perform equally
well. Note that only three additional per-fragment operations are exe-
cuted by our approach compared to Sadowsky’s method. These addi-
tional operations did not impose a drawback in terms of performance
compared to PT.

With density distributions of higher degree (d = 2 or d = 3), the



(a) (b) (c) (d) (e) (f)

Fig. 9. Comparison of virtual X-ray images to ground truth data. The projections (a) and (b) show close-ups of the right ilium (pelvis) and were
generated by applying our method to a tetrahedral mesh of 252k tetrahedra and density function degrees d = 0 and d = 3 respectively. A ground
truth projection from CT (c) and a clinical X-ray image (d) of the same pelvis are given for reference. Images (e) and (f) depict the differences of
the virtual X-rays (a) and (b) to the ground truth (c) with red indicating positive error, blue negative error.

performance of both rendering methods is decreasing. This matches
well with the investigation of Sadowsky et al. in [14]. They argue
that the decrease is caused by the Bernstein density function terms
integrated in the fragment shader, which show a “trend to exponential
growth”. However, our method still reaches interactive rates even for
d = 3 and more than 1 million tetrahedra.

There are only minor differences in speed when projecting tetrahe-
dral meshes with up to 750k tetrahedra and density functions d = 0
and d = 1. We believe this is due to hardware-accelerated vector op-
erations, which allow to process one Bernstein coefficient (d = 0) just
as efficiently as four coefficients (d = 1) stored in a vector.

The quality evaluation indicates that our method generates virtual
X-rays similar to ground truth images from CT. We confirm the ob-
servation of previous work [14, 15, 22] that projections from higher-
order density functions increase the similarity of virtual X-rays to
ground truth data compared to those from lower degrees (d = 0 and
d = 1). Our implementation renders identical results as Sadowsky’s
approach since it solves the same volume rendering integral and adopts
the closed-form integration of higher-order density distributions.

The difference images to ground truth data show discrepancies at
the boundaries of the projected pelvic bone (cf. Figures 9e and f). We
attribute this to the geometric simplification that occurs when approx-
imating the curvature of the pelvis with tetrahedral meshes. The tetra-
hedra fail to represent the thin, high-density cortical shell of the bone.
This has to be considered for model generation in future studies.

Compared to a CPU-based deformation of SSIMs, our GPU-based
deformation and projection approach benefits from highly parallel ex-
ecution of the linear combination, fast texture access and hardware-
accelerated vector operations. It is important to note that the CPU
measurements do only account for a multi-threaded deformation of
the model and not for projecting a virtual X-ray image. We consider
them to reflect the upper bound of possible performance of previous
hybrid CPU/GPU methods, since the deformation step remains a bot-
tleneck when rendering SSIMs with higher-polynomial density func-
tions and when regarding larger parameter spaces (e.g. more than 10
parameters). The rendering time of the CPU implementation grows
non-linearly with approximately the first 5 parameters due to thread
management overhead that outweighs the actual computation.

If a CPU-based deformation is applied, additional resources are re-
quired to push the deformed model to the GPU and to project it accord-
ingly. The measurements of the hybrid solution give an example how
these operations further decrease the overall rendering performance.
It would be possible to deform the model in parallel on the CPU and
concurrently project the deformed elements on the GPU. This would,
however, also introduce additional overhead through thread synchro-
nization. Our GPU-only approach in contrast does not copy the de-

formed mesh and density information between CPU and GPU but de-
forms and projects the SSIM in parallel on the GPU.

8.1 Reconstruction performance

To show the advantages of our GPU-only approach, we reconstructed
five pelvic bones from standard X-ray images (see Figure 10). On
average, approximately 6000 projections (and deformations) were ex-
ecuted for each experiment while fitting the pelvis SSIM (46 deforma-
tion parameters, density function degree d = 2) to the X-ray images.

In spite of this large number of virtual X-ray images that had to
be generated, we were able to reconstruct a pelvic bone in 1:41 min-
utes average time using our GPU method. In contrast, it takes 9 to
10 minutes to perform the same reconstructions with the hybrid defor-
mation/projection approach. Our GPU-based method generates 4 to 6
times more virtual X-rays in the same time frame. These additional
samples can be utilized to avoid local optima during optimization, e.g.
by executing the optimization process several times using different ini-
tialization parameters of the anatomical model.

From the performance evaluation in Section 7 it becomes obvious
that by applying our GPU-only approach in theory a speed-up in recon-
struction performance of a factor 9 and more is possible. The current
implementation of the reconstruction framework reads back the vir-
tual X-ray image from the GPU and evaluates the distance measure on
the CPU, which leaves the GPU idle and thus slows down the overall
process. This issue will be addressed in future work.

We are in the process of evaluating the reconstruction framework
with regard to measuring pelvic tilt and orientation of the acetabulum
(cotyloid cavity) from single X-ray images. Results will be published
in a separate study.

9 CONCLUSION

We presented a fast and efficient method to generate virtual X-ray im-
ages from deformable anatomical models. The approach deforms and
projects volumetric meshes in parallel on the graphics hardware and
reaches interactive frame-rates while shifting computational burden
from the CPU to the GPU.

In the context of reconstruction processes, we see several ad-
vantages of our GPU-only approach compared to previous hybrid
CPU/GPU methods: First, while deforming and projecting the
anatomical model on the GPU, other computations related to the re-
construction can be performed concurrently on the CPU, e.g. to con-
trol the optimization process. Second, the combined deformation and
projection on the GPU shows a performance increase over CPU-based
methods and accelerates the reconstruction process. Third, our method
scales better with respect to the number of deformation parameters and
the complexity of the underlying model. The GPU-based approach



Fig. 10. Reconstruction of three pelvic bones from standard 2D X-ray images using our combined deformation and projection approach on
the GPU. Every column depicts a different reconstruction case. From top to bottom: Silhouettes of reconstruction results projected into clinical
reference images, reconstructed shape and density distributions (result), reconstructed pose of the pelvis in front of the image plane. In average,
54 deformations and projections were performed per second, with an average reconstruction time of 1:41 minutes.

allows for processing anatomical models with larger degrees of free-
dom and higher accuracy, both in terms of mesh resolution and density
function. Future work will take advantage of those models to increase
reconstruction accuracy while keeping reconstruction time as low as
possible. This will include an in-depth evaluation of the application of
our projection method to the problem of reconstructing a 3D anatomi-
cal model from clinical X-ray data.

In principle, the method supports different polynomial degrees on
different tetrahedra in the same mesh, by issuing a separate rendering
pass for each polynomial degree. This allows tetrahedral meshes to be
tailored for certain anatomical structures and applications and will be
investigated in the future.

Due to the feed-forward nature of the proposed pipeline, our method
might be coupled with other deformation techniques on the GPU. It
is possible that after a match is established between anatomy model
and X-ray, slight deformations of the mesh, for example by apply-
ing green coordinates [8], might further enhance the reconstruction re-
sult. We will investigate whether such techniques can help to approxi-
mate patient-specific anatomies that are not expressed in the statistical
model applied for reconstruction.

Our reconstruction method utilizes similarity measures such as mu-
tual information to compare virtual X-ray images and clinical data.
Currently, the virtual X-rays are read back from GPU framebuffer
memory to evaluate the similarity measure on the CPU. The similarity
measure could instead be evaluated on the GPU as well.

Additionally, we expect that a combination of the proposed pro-
jection method with GPU-based image-registration methods [3] will
further increase both speed and accuracy of the 3D reconstruction pro-
cess.
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