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Abstract. Computer assisted planning in cranio-maxillofacial surgery often requires the 
segmentation and reconstruction of the mandibular bone from CT data. A common 
imaging modality is cone-beam volumetric tomography, which requires only low doses 
of radiation yet suffers from small signal to noise ratio and strong artefacts in the 
presence of metal. This work explores the ability of model-based segmentation using a 
3D statistical mandible model for automatic segmentation in such data. Apart from the 
statistical model, a key ingredient for this method is the deformation strategy for 
detecting the mandibular bone. Quantitative results support the feasibility of the 
proposed approach. 
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Fig. 1: Left and right: slices from low-dose CBVT, middle: deformable statistical shape model 
 

1. Introduction 

Cone-beam volumetric tomography (CBVT) is a widely available technology and a 
suitable foundation for three-dimensional diagnoses and planning in cranio-
maxillofacial surgery [1]. Such scanners can operate with a significantly reduced 
patient’s exposure to radiation compared to conventional CT. As a side effect of the low 
dose, however, such images are often noisy, and metal artefacts are present (Fig. 1, left 
and right).  

One of the major applications for CBVT is dental imaging. The surgical procedure of 
placing dental implants requires careful preoperative planning. The surgical plan is 
guided by prosthetic considerations and anatomical structures, which limit the volume 
into which implants can be inserted.  

The basis for computer aided planning is a segmentation of the mandibular bone in the 
data. Due to the problems mentioned, this task is difficult to automate with low-level 
techniques, such as thresholding, region growing or morphological filters. We intend to 
solve this problem by incorporating a-priori knowledge about the expected anatomical 
shape of the mandible into a (model-based) segmentation process. 



2. Methods 
The basic idea of model-based segmentation [2] is to capture the anatomical 

variability of normally developed mandible shapes in a statistical atlas (training phase) 
and to match this atlas to a given CT data set via a deformable model approach 
(segmentation phase). 

2.1 Training Phase 

The main challenge in performing statistical analysis on a set of 3D shapes lies in the 
correct identification of anatomically corresponding points on each training surface. 
Among the many existing approaches for solving this problem, we adopt the method of 
consistent patch decomposition and parameterization to establish correspondence 
between different individual surfaces [3]. Each training shape is decomposed into a 
number of corresponding regions interactively. Each of these regions is then mapped 
consistently to a common base domain under the constraint of minimizing metric 
distortion. Concatenating these parameterizations directly yields the desired 
correspondence map. 

As a result of this process, all training shapes can be represented in a common vector 
space of dimension 3n, where n is the number of sample points used to discretize the 
shapes (vertices of the surfaces). Principal component analysis (PCA) on this set of 
vectors provides a compact representation of the variability within the training set, 
resulting in a linear model (average shape v plus the main modes of variation P within 
the sample): . The variables (degrees of freedom) of this model are 
the weights b of the eigenmodes of the covariance matrix (shape weights) and a linear 
transformation T. 
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3.2 Segmentation Phase 

Segmentation using a statistical model can be formulated as a registration problem. 
Let R denote the surface of the shape in the data to be segmented. Then we must solve 
the minimization problem: 

2

,
||),(||minarg*)*,( TbSRTb

Tb
−=  

The final segmentation is an approximation to R given by *)*,(* TbSR = . In the 
segmentation setting, the location and shape of  is encoded implicitly in the image 
data I to be segmented. Therefore, one must derive a model for this encoding. This 
model certainly depends on the image data I and of the shape to be segmented. It can be 
incorporated in the segmentation in the following way: let denote some 
segmentation at time i. Furthermore let 
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iRΔ  be a vector field defined on the current 

segmentation iR  describing the desired deformation as implied by the underlying 
model. We proceed by solving iteratively the minimization problems 
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until some suitable stopping condition is met. Thus the segmentation strategy becomes 
an iterative procedure of deforming the shape model to the image data I. The 
minimization is performed separately either with respect to the position parameters T 
(position adjustment) or with respect to the shape parameters b (shape adjustment). This 
amounts to solving a linear system, if the discrete deformation field iRΔ  is defined on 
the vertices of the mesh. In order to prevent extreme shapes from emerging the allowed 



range for the shape parameters is constrained, e.g. to the minimal and maximal values as 
derived from the training data. 

The segmentation process is initialized by positioning the shape model into the image 
data I. This can be done automatically, e.g. by placing the shape model in the centre of 
the bounding box of the image data. At each iteration of the segmentation process, 
several position adjustments are performed until no further significant improvement is 
achieved. Then a single shape adjustment is applied. This process is repeated until 
convergence. To improve the robustness a multilevel strategy has been implemented 
where the number of shape modes in the weighted least squares approximation is 
increased successively. At the first level only a few important modes are fitted to the 
data. For each subsequent level additional modes are considered until the maximum 
number of modes is reached. 

3.2 Deformation Model 

 
Fig. 2: Design of deformation model. Left: two profiles ( =L 4cm) normal to the surface, middle: profile 
in upper mandibular region (single peak), right: profile in lower mandibular region (twin-peak). 
 

The design of the deformation model iRΔ  for segmenting mandibular bone from low-
dose CT data is based on the analysis of one dimensional profiles along the normal of 
the shape model’s surface. Typically, such profiles show two distinct peaks that indicate 
the transition from the callus and the marrow of the bone (see Fig. 2). In the upper 
mandibular regions the bone is rather thin and often exhibits only a single strong peak. 
Thus, the deformation vector iRΔ  at a given vertex is determined as follows: 

• sample a profile normal to the current surface iR  of length  (such that half 
of the profile is located on the inside and on the outside of the surface) 

L

• apply smoothing on the profile, e.g. by gauss or median filtering 
• detect the two major peaks 
• if the magnitude of the peaks differs significantly, discard smaller of the two 
• move outwards from the right peak to the point of inflection 

Fig. 1 shows a deformation vector field iRΔ  for a given intermediate segmentation iR . 
The (signed) magnitude  is color-coded on the surface, arrows indicate the 
deformation vectors. The teeth region is not considered in this analysis, because of 
metal artefacts inherent in this region. 
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3. Results 

3.1 Statistical Shape Model 

Up to now, the training set of shapes is composed of 13 individual mandible shapes, 
reconstructed interactively from conventional CT data (Fig. 4). Each surface is 



decomposed into 8 regions in a symmetric manner (previously described in [4]): lower 
corpus mandibulae, teeth region, ramus mandibulae and the caput mandibulae (Fig. 3). 
The teeth region (two patches) is not considered in the statistical analysis because, in 
general, teeth differ in their number and the topology of the reconstructed geometry 
(contact vs. non-contact) from patient to patient. Moreover, the deformation model for 
the segmentation is not designed to include this region. 

 
Fig. 3: Patch decomposition of mandibular bone for the construction of the statistical shape model.  

     

     

    
Fig. 4: Training set of mandibles (without teeth region), lower right: average shape plus first variation. 

3.3 Surface Reconstruction of the Gold-Standard 

For the evaluation of the segmentation process 15 data sets from a NewTom DVT 
scanner were available. These were segmented interactively by anatomical experts and 
serve as the gold standard for the evaluation of the proposed methods. For comparison, 
the statistical model is directly fitted to the surface  reconstructed from the 
segmentation of each of 15 data sets by solving the minimization problem  

R
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Here  denotes the (squared) surface distance between S and S’. For details of 
solving this optimization problem refer to [3]. Results are shown in Fig. 5. 
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3.2 Segmentation Strategy and Results 

Initially the shape model is placed in the centre of the bounding box of the CT data. The 
number of sampled points along each profile is kept fixed at all times and the 



segmentation process is divided into two phases. In the first phase, only the lower 
corpus mandibulae is matched to the CT data, i.e. the deformation vectors of all other 
patches equalled 0,  was set to 5 cm. This yields a good initialization for the second 
phase, where the ramus mandibulae is also segmented, and  is reduced to 2 cm - 
resulting in a more accurate deformation of the model and at the same time preventing 
profiles in the upper mandibular region from (falsely) detecting the maxilla. The 
accuracy of the segmentation is measured by computing the surface distance between 
the automatic result with the gold standard. Results are shown in Fig. 5. 
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Fig. 5: Mean and maximum surface distances between gold standard and results of segmentation and 
surface reconstruction for each of the 15 NewTom data sets. 

3. Discussion and Conclusions 
The results of the direct surface reconstruction indicate the best possible 

reconstruction to be achieved with the available statistical shape model. The deviations 
between the segmentation and the surface reconstruction are due to shortcomings in the 
segmentation process, i.e. inaccuracies in the deformation model and/or the 
segmentation strategy. Improvements are subject to future work. 

However the results show that statistical models of 3D shapes offer a promising 
approach for automating the segmentation of volumetric data. Incorporating a-priori 
knowledge about the object and the data seems a feasible way to segment image data in 
the presence of high noise-to-signal ratios or artefacts - as is the case in low-dose CT 
data. The usage of a statistical 3D shape model of the mandible is a suitable approach 
due to the mandible’s characteristic shape and well defined topology. 

While the proposed method may require some manual interaction for post-processing, 
we expect that with increasing number of samples in the training set, interaction will be 
required only in a minority of cases. Since the model-based approach yields a good 
initialization for such interaction, this may even be avoided completely by means of 
locally elastic deformations, thus providing a fully automated segmentation method. 
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