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Abstract: The request for software assistance is increasingly gaining importance in
the field of orthopedic surgery. In the near future more people will need implants,
which have to last longer. New developments in computer assisted therapy planning
promise to significantly reduce the number of revisions and increase the longevity of
an implant. For example the computation of the functional outcome of a total knee re-
placement by prediction of kinematics may provide important guidance during surgery.
Speed, accuracy and as little manual interaction as possible are the key factors to make
those new developments available to the clinical routine. To reach this goal we present
a software assistant for the reconstruction of individual anatomical models (e.g. geom-
etry and landmarks) from medical image data, which is an essential step in this effort.
‘We will present and discuss present and future application scenarios.

1 Introduction

An important part of orthopedic surgery is the correct interpretation of the patient-specific
anatomy. Joint replacement surgery, for instance, requires detailed knowledge and under-
standing of the morphology of the bone and anatomical and mechanical axes to restore the
correct alignment of the joint. In today’s clinical routine the choice of the appropriate en-
doprosthesis (size and design) and the implantation parameters (position and orientation)
is largely based on the experience and training of the surgeon [MBR06]. In recent years
image guided surgery (IGS) has shown to provide an improvement to conventional surgery
by generating a surgical plan based on patient-specific anatomical features [BPTT04] (e.g.
landmarks). However, future applications in computer assisted surgery will provide more
sophisticated methods to plan and predict the surgical outcome [BAGDO07]. Biomechani-
cal simulations [STM*07] or virtual planning of operations [STMT07], for example, re-
quire individual anatomical models, which have to be extracted from medical image data.
The extraction process is often performed in a time-consuming manual or semi-automatic
manner, making an application in clinical routine impracticable [PMKO04].

We present a system to make those individual anatomical features readily available for
therapy planning in orthopedics. This includes automatic segmentation and reconstruction
of patient-specific geometrical models, especially the bony anatomy of the lower limb, as
well as anatomical landmarks of the respective anatomical region. Our software assistant
for decision support in orthopedic surgery is based on ZIB-AMIRA [SWHCO5], a software



for scientific visualization and data analysis (see http://amira.zib.de/).

This work is structured as follows: First we will discuss related work with similar method-
ology or application scenarios in Section 2. Then we will explain the composition of our
system and recapture the previously published methods, which form an integral part of
the system. In Section 4 achieved results and applications are presented after which we
conclude our work with a discussion on the clinical relevance.

2 Related Work

Automatic segmentation Methods for segmentation of musculoskeletal structures of the
human anatomy received much attention during the last decades. Especially the delin-
eation of bone in CT data is a well studied topic. An overview of knee segmentation
methods is given in [STZ06]. Fripp et al. [FCWOO06] apply statistical shape models for
the reconstruction of the knee bones. Haas et al. [HCS™08] developed a coarse to fine
approach for automatic segmentation of the pelvic region, i.e. parts of the pelvic bones,
the proximal femur and surrounding soft tissue). A non-rigid registration of a reference
dataset for the segmentation of pelvis and femur was proposed by Pekar et al. [PMKO04].
The semi-automatic segmentation of the pelvis was described in [LSHDO04], where a sta-
tistical shape model of the pelvic bones is adapted to the image data to perform a seg-
mentation. In a similar approach Chintalapani et al. [CES*07] describe a method for the
generation and validation of a statistical shape model of the pelvis, which is also used for
segmentation.

Landmark extraction In recent years the extraction of anatomical point landmarks was
addressed by a number of works. An image-based method was introduced by Betke et
al. [BHT103]. A template matching scheme is applied to detect point correspondences in
lung CT images. Izard et al. [IJS06] compute landmarks based on a tissue-probability map
learned from manually defined landmarks, which is later aligned to image data. A more
complex method was proposed by Dikmen et al. [DZZ08]. Spatial relations and image
features of training landmarks are learned and extracted from image data using methods
from machine learning. By fitting 3-dimensional (3D) parametric deformable models to
medical image data, Worz and Rohr [WRO06] extract anatomical point landmarks. In the
context of an orthopedic planning scenario, Ehrhardt et al. [EHPP04] introduced a voxel-
atlas based on a non-rigid registration approach for the detection of pelvic landmarks and
image segmentation in CT data.

In this work we introduce a fully automatic expendable framework to extract different
types of anatomical models, e.g. anatomical surface models and anatomical point land-
marks, from medical image data. The approaches have previously been published and
in their combination proven to offer a general framework for the extraction of relevant
anatomical features [SKH08, SKH*09].



3 Materials and Methods

The structure of our system for segmentation and landmark extraction is as follows (cp.
Figure 1): Statistical shape models (SSMs) of the structures of interest are used throughout
the whole pipeline starting with a global detection in the image data. This spatial initial-
ization is followed by an adaptation of the SSM to the image data. The resulting output
surface can be applied to anatomical landmark extraction.
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Figure 1: Principle work flow of our framework: In a first step the input SSM is spatially initial-
ized within the patient’s image data using the Generalized Hough Transform (GHT). The resulting
transformation T° is used as initialization for S(b, 7). After alignment and optional free-form
deformation of the SSM to the image data, the result surface can be used to extract anatomical
landmarks previously defined by means of Mean Value Coordinates.

Our software assistant is completely embedded into the software ZIB-AMIRA integrating
single steps of our framework, like initialization or SSM-based segmentation, on a modular
basis. Since ZIB-AMIRA is highly scriptable, all available modules can be combined
to reproduce the workflow presented in Figure 1. Another advantage of this concept is
the exchangeability of single modules within the pipeline, e.g. replacement of SSMs or
adaptation strategies, which allows for a fast adaptation to new application scenarios. So
called sub-applications or scripting within ZIB- AMIRA can be used to integrate a network
of modules into an easy to handle user interface.

3.1 Statistical Shape Models

Besides the medical image data, our system takes statistical shape models of the structures
of interest as input. Those models are generated semi-automatically following the ap-
proach by [LLS02]. Such a model can be generated from a set of training surface meshes
with corresponding surface points and has the form

S(b,T) =T[@+ Y _ bipy) (1)
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where T € R3™ represents the mean shape, p;, € R3™ the modes of shape variation, m
being the number of sample points used to discretize the shapes, b € R are the shape
weights and T is an affine transformation.

For recent applications in the field of orthopedic planning we generated a set of SSMs of
relevant anatomical structures of the lower limb, e.g. pelvic bones, femur, tibia or fibula
(see Figure 2 for examples). Once created, those models may be extended by additional
training shapes or directly be applied to different application scenarios.
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Figure 2: Statistical shape models of the pelvic bones (a) and the right femur (b-d). For both struc-
tures the first three modes of shape variation are displayed with the geometric variation color encoded
on the mean surface. First to third shape mode: pelvis(top-bottom), femur (b-d).

3.2 Automatic Segmentation System

For a single structure of interest our segmentation approach can be divided into three steps,
namely (1) finding the correct position and orientation of the anatomical structure within
the image data (detection), (2) adaptation of the available SSM to the image data driven
by image features (SSM adaptation) and (3) a free-form deformation to allow for segmen-
tation of structures that cannot be described by S(b, T') (free form step). See [SKHT08]
for a detailed description of each step.

Detection To detect an object within the image data we apply an extension of the Gen-
eralized Hough Transform in 3D space [KhoO7]. The best fit of a shape template in the
image data is determined by comparing its surface normals with the available image gra-
dients. For this task the average shape ¥ can be used as shape template, since this instance
of S(b,T) promises to capture the most shape variation occurring in the respective train-
ing dataset. The resulting position and orientation of the shape template gives us a rigid
transformation 7°, which is used to spatially initialize the SSM.

SSM adaptation The second stage of the segmentation process is the iterative adaptation
of the SSM parameters (b, T") to match the image data (see Figure 3). For this task at each
step of the iteration a displacement vector field for all points of S is computed generating
the target surface R*. Extracting the displacement vector field is performed by evaluating
image features along profiles normal to the surface. The generated surface R* is then
projected back onto the SSM by a least squares approximation between the shape model



and R*. This guarantees that the result is contained within S(b,T") and should be a valid
representation of the anatomical structure described by the model.

Figure 3: SSM adaptation for one time step ¢: Computation of the displacement vector field (a), and
generation of target surface R* by adding displacement field (b), back-projection of R* into model
space (c) and intermediate surface S(b“*, T°11).

Free form segmentation Due to the shape variations occurring in human anatomy, an
SSM is unlikely to capture those shapes exactly that are not contained in the training data.
For this task we adopted two different strategies. One is based on a rather simple approach
allowing for free deformation of the surface points towards image features under heuristic
shape preserving and smoothing constraints [KLLO7]. The second, more robust, approach
exploits methods from optimal graph searching theory. At each vertex a cost profile normal
to the surface is established. Then the global optimal surface (in terms of cost) is calculated
by using maximum flow algorithms [KLZHOS8]. The graph construction also allows for the
definition of smoothness and shape preserving constraints.

3.3 Landmark Extraction

As a last optional step our framework allows for an automatic extraction of anatomical
landmarks. We apply Mean Value Coordinates (MVCs) in R? introduced by Floater et
al. [FKRO5], which can be used to manually define anatomical landmarks relative to a
given triangular control mesh. This control mesh can be any anatomical shape represented
by a statistical shape model (see Figure 4(a and b)). By adapting this reference shape
to patient’s image data the landmarks are transferred to the patient-specific anatomy by
interpolation using MVC (see Figure 4(c)). In addition, the linear character of MVCs
and a consistent surface mesh of the training surfaces allows for an easy combination
of mean value weights w; from different shape instances (see [JSWO05] for details on the
computation of w;). To minimize the influence of outliers of the manually defined training
landmarks it is possible to define landmarks on multiple instances of S(b,T") and average
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with K being the set of training surfaces used as landmark reference, w;“ the j-th Mean
Value weight of the k-th training dataset , and p; the vertices of the reconstructed surface
mesh.



Figure 4: Average shape model of the femur with landmarks (red) relative to the surface (a). Chang-
ing the shape parameters (b, 7") morphs the landmark and axes geometry by means of MVCs (b).
Adaptation of the model to image data allows for direct extraction of the given landmarks (c).

4 Results and Applications

In this Section we will present some areas of application, where our fully automatic system
was applied successfully.

Pelvic bones For applications in orthopedics (e.g. implant planning or osteotomies) and
oncology (e.g. radio therapy planning) it is essential to know the morphology of the pelvic
bones. Like presented in [HEPPO1] an implant may virtually be implanted preoperatively
to find the optimal implantation parameters. For the fast and accurate reconstruction of
the individual pelvic anatomy in a large scale study we applied our automatic system to
CT data of the pelvic region [SKHT08]. An SSM of the pelvic bones, namely left and
right ilium as well as the sacrum, was used to segment the input data in a fully automatic
manner. The time for reconstruction was reduced from up to multiple hours to approx. 4
minutes without necessary user interaction. Our method outperformed results from similar
(semi-automatic) studies in terms of accuracy.

Joint regions The anatomy of joints and their correct geometric modeling plays a major
role in biomechanical simulations. The solution of contact problems using finite element
methods depend on a consistent geometry, which is intersection free and an accurate rep-
resentation of the patient’s anatomy. Using a combined SSM of the pelvic bones and the
complete femur within our framework we could present a robust and accurate method for
the segmentation of the hip joint [KLZH09]. This coupled approach allows for the seg-
mentation of image data with low slice resolution where a distinction of tissue boundaries
is hardly possible.

Landmarks An area which is highly relevant in today’s clinical routine is the extraction
of anatomical point landmarks. This information can be used to determine anatomical
and mechanical axes as well as reference systems to assess the relative positions of single
anatomical structures. Such measures enable the orthopedic surgeon to detect changes in
anatomy and the resulting biomechanical conditions, which might be caused by disease or



as a consequence of surgery. Although the manual extraction of those landmarks can typi-
cally be achieved in a few minutes for single subjects, this procedure is prone to intra- and
inter-observer variability. In addition larger studies (n > 100) on human morphology are
only possible with automatic extraction methods generating reproducible results. We ap-
plied our system to CT data of the pelvic region to automatically extract three anatomical
point landmarks defining the anterior pelvic plane, necessary for referencing the orienta-
tion of the acetabulum [SKH*09]. Our automatic approach generated results comparable
to that of human experts on 100 datasets with a processing time of only a few minutes.

Ligament attachment sites Besides the reconstruction of bony anatomy, soft tissue plays
an import role within the musculoskeletal system. New techniques in biomechanical en-
gineering require a representation of the complete system to validly predict the functional
outcome of orthopedic surgery. For example ligaments and tendons are responsible for
the transfer of forces during simulation. Without proper knowledge of the exact location
and shape of the ligament or tendon attachment site, a functional prediction is unlikely to
produce a valid solution. Unfortunately those structures are hardly detectable in CT data,
even by expert radiologists. We adopted our framework to extract bony anatomy including
the 3D shape of ligament attachment structures from CT data of the knee [SLZ08]. This
was done by a modification of the SSM, where the attachment sites of interest marked on
the training surfaces are part of the statistical shape analysis.

An example for the combination of bone segmentation and landmark extraction of the
lower limb can be seen in Figure 5. Here, our system is utilized within the EU Project
DeSSOS (FP6 IST Project 027252), concerned with the optimization of implantation pa-
rameters for total knee replacements.

5 Conclusion

We presented a software assistant for automatic extraction of patient specific anatomical
features (i.e. geometry and landmarks) for application in orthopedics. Our system sig-
nificantly reduces manual interaction times for the segmentation of anatomical structures.
Regarding the fact that our system does not need human intervention, the effective manual
effort reduces to nearly zero depending on the further processing of the results. Segmen-
tation accuracy and landmark extraction quality are comparable to that of human experts.
We applied our framework to different anatomical structures of the human musculoskele-
tal in different application scenarios to show its generality. Since the process does not
require any supervision our system is a first step in making new promising technologies
for computer assisted therapy planning in orthopedics available to the mass market.

In the future we are going to adapt our framework to new requirements arising from current
or upcoming developments in the field of prediction of functional outcome of orthopedic
intervention. This includes extension of the adaptation strategies and the SSM database
to new structures like muscles or ligament and tendon geometry. This will allow for the
direct export of simulation ready anatomical models for biomechanical simulation.
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Figure 5: Our system applied to reconstruction of anatomical point landmarks of the lower limb
(EU FP6 IST Project DeSSOS (027252): CT Data is loaded into ZIB-AMIRA and connected to a
single module for anatomical reconstruction (red) (a), after choosing the side of the body the SSMs
of the knee, femoral head and distal tibia are automatically fitted to the image data (b), based on the
geometric reconstructions relevant anatomical landmarks are extracted (c), which can finally be used
to extract anatomical and mechanical axes (d).



