
A 3D Statistical Shape Model Of The Pelvic Bone For

Segmentation

Hans Lameckera, Martin Seebaßb, Hans-Christian Hegea, Peter Deuflharda

aZuse Institute, Takustr. 7, 14195 Berlin, Germany;
bIndeed Visual Concepts GmbH, Ihnestr. 23, 14195 Berlin, Germany

ABSTRACT

Statistical models of shape are a promising approach for robust and automatic segmentation of medical image
data. This work describes the construction of a statistical shape model of the pelvic bone. An interactive
approach is proposed for solving the correspondence problem which is able to handle shapes of arbitrary topology,
suitable for the genus 3 surface of the pelvic bone. Moreover it allows to specify corresponding anatomical features
as boundary constraints to the matching process. The model’s capability for segmentation was tested on a set of
23 CT data sets. Quantitative results will be presented, showing that the model is well suited for segmentation
purposes.

Keywords: statistical shape models, 3d correspondence problem, model-based segmentation, pelvic bone

1. INTRODUCTION

1.1. Motivation

Hyperthermia is a promising approach in cancer therapy. The method is based on heating up affected tissue
compartments to temperatures above 42 degree Celsius without damaging surrounding tissue compartments. In
regional hyperthermia tumors in the pelvic region are heated using radio waves. Treatment planning consists
of simulating and optimizing the temperature distribution in the patient with the aim of computing optimal
antenna parameters. This requires the generation of individual patient models from 3D image data.
Within the setting of a hybrid system (applicator plus MR tomograph, see figure 1, left) MRT images showing the
actual patient position in the applicator can be used for therapy planning. This reduces inaccuracies introduced
by the former approach where the planning was performed on the basis of CT data. However, the segmentation
of MRT images is a quite difficult task. An automatic pre-segmentation via thresholding is not possible because
there is no specific range of gray values for bone. In some regions the contour of the pelvic bone is hard to detect
(see figure 1, right). Currently the manual segmentation of the pelvic bone is the most time consuming part of
the whole planning procedure.

We propose the use of a statistical shape model for semi-automatic segmentation of the pelvic bone, based
on its representation as a surface mesh. From a set of training data, the typical shape of the pelvic bone and the
most significant modes of variation are determined (training phase, section 2). This shape information can be
subsequently used for the segmentation of new image data (segmentation phase, section 3), restricting the result
to a legal shape instance of the object to be segmented. This yields inherent robustness needed for automizing
the task of segmentation.

The model’s capability for segmentation was tested on a set of 23 CT data sets. Ultimately the model shall be
used for the segmentation of MRT data. The adaption of the shape model to MRT data however is rather difficult
and requires a much more elaborate scheme than in the CT case. This shall be subject to future investigations.
Since the boundaries of the pelvic bone are much easier to detect in CT data the current experiments serve as
a preliminary study to test the performance of the statistical shape model itself (section 4).
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Figure 1. Left: hybrid system (MRT plus applicator), Right: MRT slice image from the abdomen with pelvic bone.

1.2. Previous work

Generating statistical shape models is a challenging task especially for shapes of complicated topology like the
pelvic bone (genus 3). The main problem is the need to establish correspondences between different shapes in
the training set, i.e. to match anatomically equivalent features. This becomes particularly difficult in 3D. Several
approaches for defining good correspondences have been proposed:

A method for 3D shape correspondence using local geometry and geodesics is described by Wang et al.1

without its application to statistical shape models. It is evaluated by computing residual surface distances.
Kelemen et al.2 represent the shapes by their expansion into a series of elliptical harmonics. The PCA is per-
formed on the parametric description in contrast to the point distribution model used by Cootes et al..3

Thompson et al.4 compute a mapping from each shape onto a sphere using a deformable model approach. Cor-
respondence between two spheres, constrained by matched anatomical feature lines, is established by means of
a warping algorithm. Only shapes with sphere-like topology can be treated in the previous two approaches.
Fleute et al.5 establish correspondence by elastic registration of a template shape with all other shapes based on
minimizing Euclidean distance. Closely related is the approach of Frangi et al..6 The PCA is performed on the
points of the control grids computed from an elastic registration on binary volumetric data.
Brett et al.7, 8 present two approaches of automatic construction of shape models based on polyhedral shape
representation. One minimizes the Euclidean distance between shapes on different levels of detail, obtained by
triangle decimation. The related problem of surface folding is relaxed by their second approach of parameterizing
surfaces onto common planar domains using harmonic maps. Their method applies only to surfaces homeomor-
phic to discs and does not guarantee fold-over free mappings however (see9 for an illustration of this fact).
Davies et al.10 define the correspondences using an information theoretic minimal description length approach.
Here the optimality criterion is the compactness of the model. The optimization of this criterion is very expen-
sive. The method has been applied to 2D-examples and an extension to 3D shapes with sphere-like topology is
outlined.

The method used in this work has been described by Lamecker et al.11, 12 for the construction of a statistical
shape model of the liver. It is based on the idea on minimizing metric distortion and consistent patch-wise
parameterization of the shapes. It is interactive, yet able to handle shapes of arbitrary topology.

2. TRAINING PHASE

2.1. Statistical Shape Models

A statistical model is built from a training set of shapes vi (i = 1, . . . , N). Each shape vi is given by M points
sampled on its surface (thus vi ∈ R

3M ). Using principal component analysis each shape vector can be expressed



using a linear model of the form

vi = v + Pbi = v +
∑

k

pkbki (1)

where v is the mean shape vector and P = {pk} the matrix of eigenvectors of the covariance matrix. The
corresponding eigenvalues {λk} describe the amount of variance in the direction of the eigenvectors. The shape
parameters b = {bk} control the modes of variation.

In order to obtain a correct statistical model allM points on each surface (a) must correspond in an anatomical
meaningful way, and (b) their coordinates must be given relative to a common frame of reference (alignment).
This is crucial, since incorrect correspondences can either introduce too much variation or lead to illegal instances
of the model.

Note that - in general - these two goals can be accomplished independently of one another. Often, however,
an initial alignment precedes the computation of corresponding points (e.g. when corresponding points are
supposed to be closest points). In this work we will employ a method, that does not rely on an initial alignment
(see section 2.2). Once correspondence has been established, the alignment will be computed in the following
way:

Without loss of generality, let v1 define the reference coordinate system, which all other shapes v′
j (j > 1)

will be aligned to. Let x1,k denote the coordinates of the shape vector v1, and x′
j,k the coordinates of v′

j

respectively. Then we compute a rigid transformation T j,min that minimizes the sum of squared distances
between corresponding pairs x1,k and x′

j,k (k = 1, . . . ,M), for all j > 1:

T j,min = argmin
T

M
∑

k=1

‖x1,k − Tx′
j,k‖

2

This minimization problem can be solved by singular value decomposition.13 The coordinates of the final shape
vector vj will then be xj,k = T j,minx′

j,k.
This procedure introduces some bias towards the reference system v1, which can be reduced by iterative refine-
ment (see e.g. Frangi et al.6). However we have seen in our experiments that the influence of this defect is rather
small.

2.2. Solving the correspondence problem

Establishing correspondence between two topologically equivalent 3D shapes S1,S2, represented as triangular
meshes, means computing a homeomorphic mapping

f : S1 → S2 ,

possibly under additional constraints (e.g. specifically given correspondences of points or lines of anatomical or
geometrical significance). Depending on these constraints, there may be many solutions to this problem. Hence
there is a need to impose further restrictions, that define optimal correspondences.

Since we are dealing with anatomical shapes, we propose that f is required to introduce as little distortion as
possible, i.e. preserve the metric structure of S1 by approximately keeping angles fixed and allowing for a global
scaling of S1.

In this work we will present an approximate solution to this problem. f will be computed by mapping both
shapes S1 and S2 to a common base domain D homeomorphic to S1 or S2. Hence we are left with the problem
of finding a mapping fi : Si → D for each shape i, meeting the requirements defined above.
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The method will be explained in more detail in the remainder of this section.
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Figure 2. A homeomorphism f between the shapes S1 and S2 is computed by mapping each patch of the two shapes
onto a disc using the shape preserving mappings φ11 and φ21 respectively. The boundaries are mapped to the unit circle
by fixing all branching points according to their average arc-length on both surfaces to be matched. All edges on the
boundaries are mapped according to their arc-length on the original surfaces. The resulting mapping for one patch is
given by φ−1

21
◦ φ11.

Surfaces homeomorphic to discs. Let us consider the easiest case, where S1 and D are homeomorphic to a
disc. Moreover let D ⊂ R

2 be a convex region. As an additional constraint, we require the boundary of S1 to be
mapped smoothly to the boundary of D.

We use convex-combination maps14 to flatten S1 to D. Without loss of generality, let

X = {x1, . . . ,xn,xn+1, . . . ,xN} (3)

be the coordinates of the vertices of the surface triangulation S1. Assume that x1, . . . ,xn are internal nodes,
while xn+1, . . . ,xN lie on the boundary. Furthermore let ui ∈ D ⊂ R

2 (i = 1, .., N) be the corresponding
coordinates in the parameter domain. The mapping

φ : X → D, xi 7→ ui = φ(xi)

is called a convex combination map, if

ui =

N
∑

j=1

λijuj (4)

for all internal nodes i = 1, . . . , n, and

N
∑

j=1

λij = 1 , λij

{

= 0 (i, j) 6∈ E

> 0 (i, j) ∈ E
(5)

where E is the set of all edges of the triangulation. It was shown by Floater14 that φ does not produce any
fold-overs in the planar triangulation, and every node ui lies in the convex hull of ∂D. Computing φ amounts to
solving the linear system (4) under the constraints of (5). Floater also showed that there exists a unique solution
to this problem. Since (4) is a sparse linear system of equations, it can be solved efficiently.

The question remains on how to choose the convex combination weights λij . We are interested in producing
a mapping, that preserves the metric structure of the surface S1 as good as possible. We use here the idea of
locally approximating the geodesic polar map,15 first presented by Floater.14 Thereby λij are computed as
convex weights in the planar domain, such that the angles and lengths of the original triangulation are preserved
as good as possible The resulting map is called shape preserving map. Please refer to Floater14 for details.



Figure 3. Pelvic bone decomposition.

Arbitrary surfaces. For establishing correspondence between two arbitrary surfaces we employ the method
of consistent surface parameterization as presented by Zöckler et al..16 An arbitrary surface is thereby divided
into np patches, each homeomorphic to a disc. This decomposition needs not only to be topologically equivalent
on all surfaces of the training set but also to represent similar anatomical regions in order to get a meaningful
correspondence. Each corresponding pair of patches is mapped onto a common planar convex base domain via
φij , where i = 1, 2 represents the shape and j = 1, . . . , np enumerates the patches. We choose the unit disc
(radius 1, centered at the origin) as the base domain. Continuous continuation over φij , j = 1, . . . , np results in
the full mapping fi : Si → D, where in this case D represents a set of unit discs. To achieve continuity across
patch borders the patch boundaries are mapped to the unit circle according to their average arc-length on the
two surfaces to be matched (see figure 2). Branching points (vertices, that belong to more than one boundary)
are thus fixed on the circle, while all boundary edges are mapped according to the arc-length on their original
surface.

The patch decomposition is an interactive process. The patch boundaries are drawn on the surface by
manually selecting points where two or more patch boundaries would meet (branching points). Some intermediate
points along the patch boundaries may be added manually. These points are then automatically connected by
computing geodesic shortest paths between them. In almost all cases we use a metric that favors paths along
lines of high curvature, when these lines represent anatomical features. In other cases we use a pure distance
measure. Note that since the definition of the patch boundaries is independent of the location and orientation
of the surface in space, the whole process of establishing correspondences does not rely on any initial alignment
of the surfaces.

2.3. Pelvic Bone model

We have generated a statistical shape model of the pelvic bone from 23 CT data sets of male patients. Each
data set was manually segmented by labeling the pelvic bone regions. Before surface reconstruction a label
based interpolation algorithm is applied to reduce the effect of anisotropy of the voxels (slice thickness of 5mm,
resolution of 1.4mm in axial slices). For reasons of efficiency all surfaces are simplified17 by reducing the number
of triangles, obtaining meshes with about 25000 triangles and 12500 nodes. Each pelvic bone surface was divided
into 11 patches (figure 3):

• the promontorium (P)

• the frontal/ventral sacrum (FS, VS)

• the frontal right/left upper ilium (FRUL, FLUL)



Figure 4. Variability of a statistical model of the pelvic bone shape made from 23 training data sets: in the left column
the eigenmode with the largest variance λ1 is varied between ±3

√
λ1, in the second and third column the modes with the

second and third largest variance are shown respectively.

• the ventral right/left upper ilium (VRUL, VLUL)

• the right/left femur joint (RFJ, LFJ)

• the right/left lower ilium (RLI, LLI)

Following the procedure described in section 2.2 the user had to specify about 40 landmarks per surface, resulting
in 11 patches, divided by 40 patch boundaries and 25 branching points. Manual interaction amounts to about
30 minutes per training data.

The main modes of variation of the pelvic bone (see figure 4) model can be well interpreted as: (1) scaling
in z-direction, (2) widening and bending of the ilium and (3) change of length of the sacrum.

3. SEGMENTATION PHASE

3.1. Segmentation Strategy

The segmentation strategy based on our statistical shape model does not essentially differ from the one used by
Cootes et al.3 apart from the fact that we use a different iteration scheme. The core adjustment procedure of
the segmentation strategy consists of two steps:

• First a displacement vector ∆xi for each point xi on the model surface is computed from an analysis of
the grey value profile along the surface normal. Cootes et al.3 compute ∆xi by statistically modeling the
profiles in the training set and matching the current profile to this model. We will use a fixed model to
compute ∆xi, that will be explained in detail in section 3.2.

• Next a weighted least squares approximation between the shape model S(b, T ) = T (v + Pb) and the
displaced surface points xi +∆xi is computed. The approximation is either performed with respect to the
position parameters T (position adjustment) or with respect to the shape parameters b (shape adjustment).
To prevent extreme shapes the allowed range for the shape parameters is restricted to the minimal and
maximal values as derived from the training data.



Figure 5. Initialization of model-based segmentation

The segmentation process is initialized by positioning the mean shape v into the image data manually. At each
iteration of the segmentation process, several position adjustments are performed until no further significant
improvement is achieved. Then a single shape adjustment is applied. This process is repeated until convergence.
To improve the robustness a multilevel strategy has been implemented where the number of shape modes in the
weighted least squares approximation is increased successively. At the first level only the three most important
modes are fitted to the data. For each subsequent level three more modes are added until the maximum number
of modes is reached.

3.2. Grey-value Profile Analysis

To test the capability of the pelvic bone model for segmentation we performed experiments on CT data. We will
therefore describe a method for the computation of displacements ∆xi from CT data.
The profiles are sampled from the data by tri-linear interpolation. Their length is 25mm in both directions
(inside/outside), 50 points are taken. In CT data bone is rather well distinguishable from surrounding tissues by
its large intensity. The analysis therefore consists of scanning each profile from the outside towards the inside.
Whenever the intensity I rises below a certain threshold at point x we take ∆xi = x− xi. We chose a threshold
of 120 Houndsfield Units (HU).
In cases where the profile intersects the surface more than once or leaves the bounding box of the CT data, the
profile will be restricted to a suitable length. If a surface point does not lie inside the bounding box of the CT
at all, this point is assigned weight 0 in the weighted least squares approximation. These cases are checked at
each adjustment step of the segmentation process.

4. RESULTS

We will focus our experiments around the following questions:

• How complete is our model, i.e. how well does it describe arbitrary shapes that are not explicitly incorpo-
rated into the model?

• Is our grey value profile model well suited?

• Using the shape and the profile model, which accuracy can be achieved when segmenting CT data sets,
that are not contained in the model?



For the experiments conducted below, all data from the model building process were considered. Hence all
experiments were performed on a pool of 23 data sets, where the manual segmentations are referred to as the
gold-standard (they will be called reference surfaces).

4.1. Evaluation measures

In order to quantify the segmentation accuracy, suitable measures for comparing 3D shapes have to be devised.
In this section we give precise definitions for evaluation criteria, that we believe are useful and intuitive for
evaluation purposes.

Given two surfaces S and S ′ we define the distance d(x,S ′) between a point x on a surface S and the surface
S ′ as:

d(x,S ′) = min
x′∈S′

‖x− x′‖2 (6)

where ‖.‖2 denotes the Euclidean norm. The following distance measures are chosen to be symmetric when
exchanging S with S ′ in order not to lose important information. Let |S| denote the area of the surface.

Mean Distance:

dmean(S,S
′) =

1

|S|+ |S ′|

(
∫

x∈S

d(x,S ′)dS +

∫

x∈S′

d(x,S)dS

)

(7)

Root Mean Square Distance:

drms(S,S
′) =

√

1

|S|+ |S ′|

(
∫

x∈S

d(x,S ′)2dS +

∫

x∈S′

d(x,S)2dS

)

(8)

Maximum/Hausdorff distance:

dmax(S,S
′) = max

(

max
x∈S

d(x,S ′),max
x∈S′

d(x,S)

)

(9)

Area of deviation: The idea is to have a measure that is not as local as the Hausdorff distance and not as
global as the mean distance and allows intuitive imagination of shape difference. The relative surface area on
which the deviations are larger than some threshold t presents such a compromise:

dr(S,S
′, t) =

1

|S|+ |S ′|
·

(
∫

x∈S

Θ(d(x,S ′)− t)dS +

∫

x∈S′

Θ(d(x,S)− t)dS

)

(10)

where Θ is the Heaviside-Theta function.

4.2. Completeness

The completeness of a statistical model is its generalization ability or its ability to describe shapes that have not
been incorporated in the training set. We test the completeness of our model in a leave-one-out test: for each of
our 23 pelvic bone shapes, we match a model built from all other 22 shapes to the particular pelvic bone shape.
This is achieved by minimizing the symmetric RMS distance (8) between the model S and the reference surface
S ′ over the shape parameters b = {bk} and the transformation parameters of a rigid transformation T :

min
b,T

{dRMS (S(b,T ),S ′)} (11)

We use a quasi-Newton optimization scheme to compute b,T . On average the shapes can be represented with a
mean distance error of 1.6± 0.2mm (see row 2 of Table 1).

4.3. Leave-all-in Segmentation

For analyzing the performance of our grey value profile model, we segment all training data with a shape model
that incorporates all training shapes. Therefore we expect the results only to depend on the profile modeling
and the overall segmentation strategy, but not the statistical shape model itself, since all shapes are represented
in the model. On average the mean distance of the segmented surface to the reference surface is 0.6 ± 0.2mm.
The average surface area with deviations larger than 3mm is 1.3± 1.6% (see row 1 of Table 1).



dmean [mm] dRMS [mm] dmax [mm] dr(3mm) [%]

leave-all-in segmentation (23) 0.6± 0.2 0.8± 0.3 4.7± 1.6 1.3± 1.6

shape model optimization (22) 1.6± 0.2 2.2± 0.2 14.6± 3.8 15.8± 5.4

leave-one-out segmentation (22) 1.8± 0.2 2.4± 0.3 15.6± 4.2 18.3± 4.3

Table 1. Results of the leave-all-in segmentation (row 1: initialization by starting from optimal guess), the leave-one-out
shape model optimization (row 2) and the leave-one-out segmentation (row 3). The number in brackets indicates how
many training shapes are incorporated in the particular model. 23 data sets were segmented automatically. The different
error measures are defined in the text in section 4.1.

Figure 6. Example of a leave-one-out (grey contours) versus the leave-all-in (black line) segmentation result. Three axial,
three coronal and three sagittal slices with intersection lines of the 3D surfaces are shown. The mean surface distance
errors of the leave-one-out and the leave-all-in segmentation are 1.7mm and 0.4mm, respectively. The deviation is larger
than 3mm on 17.0% and 0.2% of the surface area, respectively.

4.4. Leave-one-out Segmentation

We are now interested to see how the actual segmentation on arbitrary CT data sets performs. We carried out a
leave-one-out test on all 23 data sets each time segmenting it with a model made from the other 22 shapes. The
average mean surface distance is 1.8± 0.2mm and the average surface area with deviations larger than 3mm is
18.3± 4.3% (see row 3 of Table 1).



5. DISCUSSION AND CONCLUSIONS

In this work we demonstrate how to generate a statistical model of the pelvic bone shape. The algorithm for
solving the correspondence problem is efficient even for the complicated topology of the pelvic bone. We show
that the principal modes of variation are well interpretable and that the model is well suited for the purpose of
segmentation. This is quantitatively undermined in a study of segmenting 23 CT data sets from different male
patients. Although the accuracy of the leave-all-in experiment is satisfactory (mean surface distance of 0.6mm),
the leave-one-out experiment yields insufficient results (mean surface distance of 1.8mm). From the shape
optimization (mean surface distance of 1.6mm) however we can conclude that the leave-one-out segmentation
is close to optimal in the sense that the results do not depend on the segmentation strategy but only on the
variance captured by the training set. Consequently the size of the training set needs to be enlarged in order to
obtain better results.

The modes of the statistical shape model are well interpretable due to the fact that a large set of anatomical
features are matched throughout the training set by the definition of the patch decomposition. However, the
objective of minimizing local distortion of the surfaces is only approximatively met by our method. Large
distortions especially occur along the patch boundaries. As an improvement we intend to relax the surface
triangulation after the initial parameterization by moving the triangle nodes on the surface, constraining only
those nodes that represent distinct features (landmarks, nodes along lines of high curvature, etc.). During the
segmentation process lateral displacements are not desirable, since they do not modify the shape. Hence a second
relaxation process at each adjustment step of the algorithm might further improve the results.

The main goal for the future is to establish a gray value profile model for the segmentation of MRT data. It
remains to be seen whether an explicit scheme can be successful or statistical modeling of the grey values will
be preferable.

The results of the experiments conducted in this work suggest that using an enlarged statistical shape model
is a promising approach for MRT segmentation.
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